Data Universe™

Distributed Storage and Resource
Sharing for the 21st Century

Brian McMillin



Data Universe™

Distributed Storage and Resource
Sharing for the 21st Century

©2012 Brian McMillin

This version was published on 2012-06-04

Leanpub

This is a Leanpub book, for sale at:

http://leanpub.com/DataUniverse
Leanpub helps authors to self-publish in-progress ebooks. We
call this idea Lean Publishing. To learn more about Lean

Publishing, go to: http://leanpub.com/manifesto

To learn more about Leanpub, go to: http://leanpub.com


http://leanpub.com/DataUniverse
http://leanpub.com/manifesto
http://leanpub.com

Tweet This Book!

Please help Brian McMillin by spreading the word about this
book on Twitter!

The suggested hashtag for this book is #DataUniverse.

Find out what other people are saying about the book by clicking
on this link to search for this hashtag on Twitter:

https://twitter.com/search/#DataUniverse


http://twitter.com
https://twitter.com/search/#DataUniverse
https://twitter.com/search/#DataUniverse

Also By Brian McMillin

Replicator Technology


http://leanpub.com/u/brian14
http://leanpub.com/ReplicatorTechnology

Contents

Data Universe™ Specifications

Abstract . . . . . ...
Introduction
Security and Intellectual Property
Limitations of Prior Systems
Glossary
Implementation

Getting Started
DataFormats . . . . .. ... ... ... .......

Future Extensions . . . . . . . .. . ... ... ....

Safeguards

Vulnerabilities and Countermeasures . . . . .. . . .

Threat Description, Mitigation and Anticipated Effect

12

14
16
25

27
28

30



CONTENTS ii

Conceptual Background for Modeling the Data Universe 34
Conceptual Steps for Building the Data Universe . . . 34
Parameters Required for Modeling . . . . ... ... 43
Suggested Models . . . . . ... ... . ... ..... 43



Data Universe™
Specifications

Brian McMillin

Abstract

This paper describes a distributed data exchange system for the
Internet. The techniques allow for a totally decentralized ex-
change of arbitrary data among participating computer systems.
Techniques for maintaining data integrity and anonymity in
the presence of arbitrarily unreliable connections and storage
media are discussed. All data structures required for a working
implementation are described.

The distributed search mechanism described here represents a
subset of a more generalized distributed computing capability.
Potential extensions would use these data transport and direc-
tory search features to form the basis of a global supercomput-
ing network. Such a network would use shared resources for
applications ranging from automated data backup to massively
parallel computation.



Introduction

The Data Universe™ is a peer-to-peer file exchange system. Its
implementation is totally decentralized and anonymous.

Directory structures and bulk data are stored in anonymous,
variable-length blocks on one or more host computer systems.
File data is divided into multiple blocks, each of which may
reside on one or more host computers. Distributed queries allow
network-wide searches for files and their constituent blocks. All
network transfers take the form of blocks pushed from host to
host. Fault tolerance is inherent in the design in that no host
or data link is required to be reliable. Redundancy of directory
and data storage, distributed processing of search functions
and autonomous movement and replication of all data provide
network robustness.

All data within the Universe tends to replicate and “popular” data
tends to replicate faster due to the action of Queries which tend
to duplicate that data. Once introduced into the Universe, it is
difficult to remove or censor a piece of information. Queries
are non-deterministic, so there is no guarantee that all copies of
a particular data block could ever be found. The anonymous
nature of data blocks themselves means that individual hosts
never need be aware of the actual content of the Blocks in
their repository. File Description blocks may be updated with
new annotations, typically reflecting user’s experiences with a
particular file. These newly annotated Blocks are added to the
Universe but do not supplant the original descriptions.

Data Blocks tend to migrate to multiple Hosts, each of which au-
tomatically make those blocks available to Queries and access by
other Hosts. This (conceptually) connectionless data movement



Introduction 3

has several advantages over traditional file transfer methods.
Data moving between computers with different speeds of phys-
ical media do not waste resources. Transfers to a fast computer
may be coming from multiple slower computers. Transfers to a
slow computer do not tie up connection slots on a fast machine.
“Hot spots” in the network tend to be eliminated since Hosts
that receive popular data Blocks automatically share them, thus
acting as a distributed resource to relieve congestion on the first
Hosts for the Block.



Security and Intellectual
Property

It is recognized that the Data Universe will be used for the
distribution of all types of data. The distribution and ready
availability of data from anywhere in the world is one of the
fundamental tenets of the entire Internet. Certain jurisdictions
and organizations attempt to exercise arbitrary dominion over
what they consider proprietary, copyrighted or unlawful se-
quences of data bits. The Data Universe architecture is designed
to protect storage and transport providers from arbitrary legal
or regulatory action. All data files in the Universe are separated
into at least two parts: a File Description (FD) and the User Data
(UD) Block(s). The Description and Data need not reside on the
same host, but both are required to re-create the original data file.
This insulates the Host computer and its administrator from any
claims that it contained proscribed data.

A series of policies enforced on the Host can provide any desired
degree of protection from such claims.

1. Atthelowest level, the host may ignore all semantic issues
and simply participate in the Universe.

2. A host may adopt a policy to never simultaneously have
resident in its repository all of the Blocks required to re-
createa particular file.

3. A host may choose to allow File Descriptions (FD) or User
Data (UD) but not both in its repository.



Security and Intellectual Property 5

4. When adding files to the Universe, a host may choose to
break even small files (less than the maximum single Block
length of 65,500 bytes) into multiple data Blocks.

5. When adding files to the Universe, a host may choose to
encrypt the User Data (UD) Blocks. The key information
required to decrypt the data would be stored indepen-
dently within the Universe. This adds a third component
(in addition to the FD and UDs) that must be present at a
single machine to extract the original data.

6. When adding files to the Universe, a host may break
the original file into multiple Blocks in Stripes instead of
blocks of consecutive data. Arbitrarily elaborate exten-
sions could allow redundant encoding (for example, Reed-
Solomon) to enable reconstruction of files with missing
blocks.



Limitations of Prior
Systems

Previous peer-to-peer systems suffer from several limitations
that are not present in the Data Universe architecture. These
limitations leave the users and operators of previous networks
vulnerable to serious claims in many legal jurisdictions.

1. The data and descriptions of shared files are kept together
on user’s systems. This is a very traditional approach that
does nothing to mitigate complete exposure of a user’s
intent in the case where the physical hardware (hard
drive) is compromised to an adversary.

2. The user must publish a list of file descriptions that are
available from his computer before they can be accessed
by other peers. This eliminates any chance of actual
anonymity on the part of the user.

3. A list of computer names (IP addresses) and their shared
file descriptions are propagated to and stored in other
systems on the network. This ensures that the scope of
the user’s interests are easily available to an adversary.

4. File searches routinely return a list of the users sharing a
specific file. This allows an adversary to target groups of
individuals with similar interests.

5. Files must be specifically shared by each user. This leads
to network bottlenecks where there is a single source of
a popular file, and a tendency for users to download files



Limitations of Prior Systems 7

without providing compensatory upload capability. This
also represents a legal vulnerability in that it makes clear
the user’s intent to redistribute selected files to others.

6. No revision or annotation of file descriptions is possible
without the assistance of the user sharing the file. Ac-
tual data users do not have the ability to correct errors
(intentional or unintentional) in the file descriptions. This
allows spammers or other zealots to waste user’s time and
network bandwidth with malformed or malicious entries.

7. There is no optimization of resources. Bandwidth and
disk space are allocated in an uncoordinated manner by
individual users.



Glossary

Block - A block is a variable-length sequence of binary bytes.
Blocks may contain from 5 to 65,505 bytes. Blocks come in five
types based on their content: User Data (UD), File Description
(FD), Directory List (DL), Host List (HL), and

Query (QU). The first 5 bytes are reserved for a block signature.
The maximum length is selected to ensure that a Block ID and
the Block itself can always be transported in a single IP Frame.

Block ID - A Block ID is a sequence of from 28 to 30 printable
characters. The Block ID is the printable representation of a L-
Hash descriptor of the data contained within the block. Even a
zero-length block will have a five character signature so there
will always be at least 28 characters in a Block ID.

Block Signature - Five characters at the beginning of each data
block that identify the type of data in the block. The first
character is literal ‘#’, the second pair identify the block type
(either ‘UD’, ‘FD’, ‘DL, ‘HL’, or ‘QU’) and the third pair identify
the compression algorithm (either ‘RD’, or ‘LZ’). The ‘# is
chosen to delimit the end of the variable length Block ID pre-
pended in the data communication channel.

DateTime - standard printable ASCII form of the creation date
and time of a file. Used to allow recreation of more complete
directory entries for files extracted from the Universe. The
value contains up to 14 decimal digits in the format: yyyym-
mddhhnnss. If the leading digit is a “2” it and any subsequent
zeroes are suppressed making this a variable-length form which
will use only 11 digits during this decade.

File ID - A File ID is a sequence of at least 27 printable characters.



Glossary 9

The File ID is the printable representation of a LHash descriptor
of the data within the file. File IDs are used to consolidate
different File Names and/or File Descriptions that describe the
same content. File IDs are also used to ensure the integrity of
reconstructed multi-Block files.

Host Computer - A Host is a computer that participates in the
Data Universe by running the Universe kernel application. A
host also makes available resources that include CPU time, Stor-
age space, a TCP/IP socket and a certain amount of Bandwidth
to the Internet.

Host ID - A Host ID in the current implementation is a URL
containing an IP address and port number in printable ASCII
text. See RFC 2732 for formats of literal IP addresses.

L-Hash - L-Hash is the algorithm used to create printable Block
IDs and File IDs. The printable form uses 64 ASCII charac-
ters from the set [0 > ..<9 *,<A’..%Z°,¢a’.. ‘2", *$’, ‘%]
to represent 6-bit values. Leading ASCII zero characters are
suppressed to create the variable-length printable form. The
recommended algorithm is L-SHA1. This implies that Block IDs
and File IDs will be 27 or more printable characters in length.

L-MD5 - A modification of the RFC1321 MD5 message digest
algorithm in which the input data length in bits is prepended
onto the 128-bit message digest value.

L-SHA1 - A modification of the RFC3174 SHA1 Secure Hash
algorithm in which the input data length in bits is prepended
onto the 160-bit message digest value.

Query - A type of data Block that contains instructions for
searching the Repository of one or more Hosts and returning
the results. The Data Universe Idle Process scans the Repository



Glossary 10

looking for Query Blocks. As they are found, they are processed
and disposed of either by (1) returning results, (2) forwarding to
another Host, or (3) discarding. A list of recent Queries prevents
the same Query from running more than once on a given Host.

Repository - The storage area on a Host computer that contains
data Blocks. A configuration parameter allows the administrator
of each Host to limit the size of the Repository. Simple imple-
mentations may store each block in a separate disk file using the
signature and L-Hash as the file name. (Windows implementa-
tions may be restricted by their inability to differentiate upper-
and lower-case filenames.)

Slicing - A general term that means breaking up an arbitrarily
large data file into a set of one or more User Data (UD) Blocks.
Typically, the first step is to run a compression algorithm. The
results are then divided into Blocks that do not exceed 65,500
bytes. The size of the blocks and whether they contain consecu-
tive data (or are broken into stripes) are arbitrary decisions made
at the time the file is entered into the Universe. Additional blocks
may be created to implement error correction logic. These may
be simple parity-based blocks or they may incorporate Reed-
Solomon Forward Error Correction coding. The goal is to allow
complete and accurate reassembly of the original file, even in
the absence of all of the data blocks. The reconstruction instruc-
tions (including the list of Block IDs, slicing/striping/ECC, and
decompression algorithm) are included in the File Description
(FD) Block.

Timestamp - standard printable ASCII form for time-of-day
values used in File Descriptions, Directory Lists, Host Lists and
Queries. The value contains exactly 12 decimal digits repre-
senting Universal Time in the format: yymmddhhnnss. Since



Glossary 11

the timestamp is predominately used for expiration times and
sorting, simple string comparisons will suffice in most instances.
Differs from a file’s DateTime which is variable length and based
on local time.



Implementation

The Data Universe is implemented in a compact, easy-to-distribute
form.

UniverseKernel.exe implements the data storage interchange
functions.

Universe.ini is the configuration file that specifies resource
allocations for the Kernel.

Universe.exe is the user interface that allows files to be shared
in the Universe and searches to find files.

Repository\ is the directory that contains data Blocks stored as
individual files with Block IDs as names.

AddFiles\ is the directory which contains files to add to the
Universe.

ExtractedFiles\ is the directory which contains files retrieved
from the Universe.

The Data Universe creates a directory which houses the Repos-
itory of data Blocks. These files are named with their Block
IDs and use the standard operating system file system for disk
management. Any necessary file or disk maintenance may be
done with existing tools. None are provided with the Data
Universe. Note that the implementation under Windows uses a
hexadecimal version of BlockIDs for naming files, since upper-
and lower-case is indistinguishable in the file system.

Directories are provided for files to be added to or extracted from
the Universe. This provides isolation of files for security and
anti-virus quarantine. The speed of add and extract operations
is non-deterministic, so autonomous operation is expected.

12



Implementation 13

The Data Universe may be removed from a Host by simply
deleting all associated files. Data Universe Configuration File

The operation of the Universe is controlled by a simple config-
uration file, Universe.ini. A sample configuration file is listed
below:

[Data Universe]
HostID=192.168.2.10:1234
CPU=10

Interval=5

Inbound=500KB
Outbound=100KB

RAM=15MB

Disk=1000MB

HostFD=Yes

HostUD=Yes



Getting Started

When joining the Data Universe, the administrator of a particu-
lar host sets some simple policies relating to the resources that he
wishes to contribute to the Universe. He chooses an amount of
disk space, a TCP/IP socket, a CPU usage limit and inbound and
outbound network bandwidth limits. From this point on, the
operation of the Universe is autonomous. Files may be added
to or extracted from the Universe via a user interface whose
operation is essentially independent of the Universe itself.

The initial distribution of the Data Universe software contains a
seed version of a Host List (HL) Block. The new Host adds itself
to the list. In the absence of anything else to do, the Universe
Idle Process periodically pushes its new version of a Host List
to the other Hosts already on the list. Eventually, one of these
transfers should find a live Host. This host will subsequently
return an updated Host List block. The new host has now joined
the Data Universe.

An identical process occurs when a Host restarts, except that the
initial Host List (HL) Block that it uses is the most recent one
stored before shutdown. File Introduction

A user interface is provided to allow files to be introduced into
the Data Universe. The file name, a text description, and optional
parameters such as compression, slicing and error correction
control the process. The resulting File Description and User Data
blocks are placed in the local repository. During the normal
operation of the network these blocks will be replicated and
distributed to multiple hosts. File Extraction

Extracting a file from the Data Universe involves two primary

14



Getting Started 15

steps: Selection and Retrieval. Selection is the process of
choosing a particular to retrieve. Retrieval involves locating the
separate pieces of a file and reassembling them on the user’s
computer.

File selection begins with the construction of a suitable Query
to the network. The query describes the desired file by name
or text description. Wildcard pattern matching is used to allow
partial or incomplete information to yield relevant results. Over
a period of time hosts in the network will return File Description
blocks that match the Query parameters. The user examines
the text descriptions and chooses appropriate entries for the Re-
trieval process. The selected File Descriptions contain block lists
required to access the data of the actual files. Additional Queries
are then made to find and return the required User Data blocks
to reconstruct the file. At this point, a degree of sophistication
can be incorporated into the Queries to allow optimization of
the network bandwidth and processing resources. Initial Queries
may return Directory List (DL) records instead of User Data.
From these Directory Lists, specific Queries may be formulated
to allow parallel transfer of blocks from multiple hosts. This also
eliminates the redundant transfers that would result from simple
Queries requesting widely available blocks.

When the necessary blocks have been received by the local
host the file is reconstructed and its integrity verified. Error
correction algorithms may be applied to repair files with missing
blocks, or in the (very rare) instance of duplicate LHash block
signatures. Data Communication

Several options exist for the transfer of data blocks from one host
to another. The conceptually preferred method pushes blocks
as connectionless datagrams from an originator to a recipient.



Getting Started 16

This eliminates the time-consuming handshake required for a
TCP/IP connection that will generally be used for only a single
block. Although connectionless transmission is preferred, there
are many situations (involving firewalls, for example) in which
it would fail. Therefore, a second choice involves connections
using HTTP. Data blocks may be transferred bidirectionally as a
POST and response. The Data Universe transport protocol may
be implemented as a script for an Apache web server.

The size of data blocks is chosen to ensure that the total size of
a block on the data channel is less than or equal to 65,535 bytes.
This is the upper limit of a TCP/IP V4 data packet. The actual
contents of a Block on a channel are illustrated as follows:

Block Length Hash Signature Data
Min Length 8 bits 160 bits 40 bits - 5 bytes 0 bits
Max Length 20 bits 160 bits 40 bits - 5 bytes 65,500 bytes
28 - 30 bytes 5 bytes 0 - 65,500 bytes

(6-bit encoding)

Data Formats

All data transfer and storage in the Universe is based on the use
of named, variable-length blocks of data. All Data Transfers are
in the form of a connectionless datagram sent from one host to
another. The datagram contains the Block ID and the Block of
data. The recipient verifies that the Block ID matches the Block
and stores the Block in its local repository.

Each Block contains signature bytes on the beginning that iden-
tify it as one of the five basic types of Blocks.



Getting Started 17

UD User Data The body of files, usually compressed

FD  File Description The File Name(s), text description(s)
and list of UD blocks that are the data

DL  Directory List List of Block IDs in the repository of a
particular host

HL  Host List List of Host Addresses and their anticipated
longevity in the Universe
QU  Query Block containing a text description of a

search to be performed on the repository

UD - User Data Block

User Data may be stored in the Universe in raw, uncompressed
form. The data is broken into segments of up to 65,500 bytes.
The signature characters “4UDRD” are the first five characters
of each block, followed by the segment of data. User Data may
be compressed using a LZH algorithm prior to entry into the
Universe. The resulting compressed data are broken into blocks
of up to 65,500 bytes. The signature characters “4UDLZ” are the
first five characters of each block, followed by the segment of
compressed data. Other compression algorithms may be used in
the future.

FD - File Description Block

A File Description (FD) Block associates a File ID with one or
more file names, zero or more file description text strings, and a
list of one or more User Data (UD) Blocks that contain the actual
file data. The FD Block is formatted in an XMLlike manner for
ease of searching and parsing.



Getting Started 18

Some files may be broken into an extremely large number of
UD Blocks. This may cause the list of Block IDs to exceed the
capacity of a single FD Block. Multiple FD Blocks may be cross
referenced by including an indirect reference to an UD Block in
the list of UD Block IDs. An indirect reference is a Block ID with
an “@” on the front. This UD block is interpreted as a sub-list of
UD Block IDs to be inserted into the list.

Each File Name and File Description within the FD block has an
associated timestamp. Typically, names and descriptive text are
sorted into reverse chronological order within a FD, with older
information falling off the end. Names and text descriptions
that share the same time stamp may be consolidated into one
sub-record. A File Description block is a block of ASCII text
formatted as follows:

#FDRD<ID=FilelID>

<bl="BlockID,BlockID,BlockID">
<name="autoexec.bat",text="Everyone should have this file",
date=30721095432, ts=030721123456 />

<text="Solves all your DOS problems", ts=030721123457 />
<text="Danger! Reformats hard disk", signed="Guardian",
pgp="asdf", ts=030722010015 />

</bl>

Disk Files are uniquely identified by their File IDs which are
based solely on the file content. This unique content is associated
with one or more Block ID lists. The list of Block IDs allow the
file to be reconstructed from scattered pieces. The integrity of
the result is verified by comparing against the File ID.

File Names (Windows, etc. File Names), zero or more Text
Descriptions, and an ordered list of one or more Block IDs.



Getting Started 19

As part of its normal operation, a Host will typically scan its
repository for FD Blocks with duplicate File IDs. The Blocks with
the most recent timestamps may be arbitrarily retained, or File
Name and Text Descriptions may be merged to create new, more
appropriate FD Blocks. Note that it is possible for the same data
file to be entered into the Universe many times, possibly using
different Slicing or Compression strategies. This means that the
Block IDs in the Block list would not necessarily be the same.

DL - Directory List Block

A Directory List (DL) Block contains a Host ID, an expiration
timestamp and a list of Block IDs that are available on the host.
The Block ID list need not be exhaustive and is chosen in a more-
or-less arbitrary manner by the host. Directory List Blocks are
created periodically during the Data Universe Idle process and
pushed to arbitrary Hosts. In addition, Directory List Blocks may
be created by the operation of Queries. A Query may specify that
the return value be a Directory List indicating which of a set of
Block IDs are present on the target system. This is normally
used in anticipation of requesting those data Blocks from one of
several Hosts.

#DIL RD<Host=HostID, expire=030721123456>
BlockID, BlockID
BlockID, BlockID, BlockID

HL - Host List Block

A Host List (HL) Block contains a list of Host IDS and their
anticipated longevity timestamps. Host Lists are composed and



Getting Started 20

distributed by each Host as part of their Idle processing. Host IDs
are contained in Directory List (DL) and Host List (HL) records
received by each Host. These are combined and consolidated
into new lists which are periodically pushed to other Hosts.
Only the largest timestamp associated with a given Host ID is
retained. The Host’s own ID is included in any Host List (HL)
Block pushed.

In general, contents of a Host List (HL) Block are prepared during
the Idle phase of a Host’s operation. Host List (HL) Blocks are
also prepared as a response to a Query in which Directory Lists
are scanned for a particular Block ID. Hosts known to possess
the required Block ID(s) are included in the response Host List
(HL) Block. The longevity timestamp is a time in the future after
which the Host ID will be deemed to have expired. The Host
computes its own longevity timestamp from the median duration
of the most recent five times the Universe Kernel ran.

The longevity of all other Hosts is the latest timestamp that has
been seen for that Host.

The format of a Host List (HL) Block is printable ASCII text as
follows:

#HLRD

<Host=HostID, expire=030721123456>
<Host=HostID, expire=030721123456>
<Host=HostID, expire=030721123456>

QU - Query Block

A Query (QU) Block is a block of printable text in an XML-
like format. It contains parameters that are used by a Host to



Getting Started 21

search other Blocks contained in its Repository. Query Blocks
are processed asynchronously on each Host, as time permits.
Successfully finding a desired Block results in a response being
sent back to the originator of the Query. Responses are simply
data Blocks pushed back to the originating Host. Queries which
fail may be replicated intact to other Hosts where they will also
be processed. After processing (or expiration) Query Blocks are
eliminated from each Host’s repository.

The format of a Query (QU) Block is printable ASCII text as
follows:

#QURD

<ReplyTo=HostID, expire=030721123456>
<Discard=030721123456>
<BlockInterval=secs>
<Search=UD/FD/DL>

<Reply=UD/FD/DL/HL>

<ReplyMax=nnn>

<FanOut=nn>

<Query=expression>
<Phrase=expression>

The <ReplyTo=HostID,expire=longevity> parameter indicates
the Host that originated the Query. It is the Host ID to which any
successful responses will be sent. The longevity is included to
allow Hosts that receive the Query to update their Host List (HL)
records so that direct communication with the Query originator
will be possible. This parameter is required.

The <Discard=timestamp> parameter indicates a time after which
the Query will be discarded by all Hosts. No further responses



Getting Started 22

will be sent after this time. In general, Hosts will also discard
Queries with Expiration times too far into the future. This helps
prevent (hypothetical) malicious or mal-formed Queries from
overwhelming the ReplyTo Host. This parameter is required.

The <BlockInterval=secs> parameter indicates the number of
seconds that will elapse between Block transmissions resulting
from this Query. If the query was successful, it may return
many result blocks. This interval specifies how fast these blocks
will be sent to the ReplyTo HostID. If the query fails, the Query
Block itself may be sent to other Hosts to process. This interval
specifies how fast these replica Query Blocks are to be sent. If
not specified, the Host determines based on its configuration
parameters.

The <Search=UD/FD/DL/HL> parameter specifies the nature of
the Blocks to be searched by the Query. One or more of the
four options will actually be included in the parameter. This
parameter is required.

The <Reply=UD/FD/DL/HL> parameter specifies the nature of
the Blocks to be returned by the Query. One or more of the
four options will actually be included in the parameter. This
parameter is required.

Not all combinations of Search= and Reply= parameters are
valid. The table indicates the results to be expected from each
possible pair. The actual implementation may execute several
of the ten meaningful operations based on multiple values for
Search= or Reply=. This allows, for example, the return of FD
and UD Blocks pertaining to a particular file with a single Query.

Search the User Data Block IDs (not contents)

Search Reply Results



Getting Started 23

UD UD Return the UD Blocks themselves

UD FD

UD DL Return a DL Block with only the matching UD Block IDs
uD HL Return a HL Block with only the current Host listed.

Search the contents of the File Description Blocks

Search Reply Results

FD UD Return the UD Blocks listed in matching FDs

FD FD Return any FD Blocks with specific contents.

FD DL Return a DL Block with only the matching FD Block IDs
FD HL Return a HL Block with only the current Host listed.

Search the contents of the Directory List Blocks

Search Reply Results

DL UD

DL FD

DL DL Return any DL Blocks with specific contents.

DL HL Return a HL Block with only the current Host listed.

Search the contents of the Host List Blocks

Search Reply Results

HL UD
HL FD
HL DL
HL HL Return any HL Blocks with the specific contents.

Using Reply=HL is generally reserved for a preliminary Query
which could (potentially) result in a flood of responses. The com-
pact, single Host response minimizes bandwidth requirements
and allows the ReplyTo Host to choose the strategy for additional
queries.



Getting Started 24

The <ReplyMax=nnn> parameter indicates the maximum number
of Blocks that will be sent by each individual responder to the
Host ID specified in the ReplyTo= parameter. This allows a limit
to be placed on traffic that will be transmitted as a result of a
particular Query. If not specified, one response Block will be
allowed.

The <FanOut=nn> parameter specifies the number of Hosts that
an unsuccessful Query will be replicated to. In general, Queries
that succeed return data to the ReplyTo=HostID. Queries that
fail are sent to nn randomly selected other Hosts in an attempt to
generate some success. If not specified, queries are not replicated
and are simply discarded with no response. A FanOut value
of one will cause the Query Block to move randomly from one
Host to another until (1) it succeeds and sends a response to the
ReplyTo HostID, (2) it expires and is discarded, or (3) it returns
to a Host that has already processed it and is discarded.

The <Query=expression> parameter specifies the actual boolean
expression used to search the repository. Operands in the ex-
pression are given names in <Phrase=ID:expression> parameters.
One Query=expression parameter is required in a Query Block.
The evaluation of the expression yields a True or False value
which ultimately determines the success or failure of the entire

Query.

The <Phrase=ID:expression> parameter specifies the named
operands and literal comparisons to be used in the repository
search. A separate Phrase=ID:expression parameter is required
to define each different operand used in the Query=expression.



Getting Started 25

Search Expressions

Search expressions are composed in a partially pre-parsed within
Query Blocks. The syntax of complex searches is thus moved
to the user interface application and is not resident in the Data
Universe Kernel. This is an attempt to provide functionality
similar to regular expressions but without the computational
overhead. Examples of Search Expressions follow:

Examples are TBD

Future Extensions

A simple ASCII text method of describing simple directory
searches was outlined above. Extensions to this concept would
allow any computation to be requested via this standard Query
Block mechanism. Input data for the computations is available
from User Data (UD) blocks in the Universe. Complex compu-
tations could be described in User Data (UD) Blocks containing
Java applets, or (with much more danger to Host integrity) actual
executable programs.

Computational results would be returned to the requesting Host
as new data Blocks just as the results of a directory search are in
the reference implementation.

Automated data backup could easily be implemented with a
variant of the user interface utility. Files to be backed up
would be introduced into the Data Universe and tagged with
appropriate File Descriptions. Redundant User Data blocks
would be automatically detected and would not add to the traffic



Getting Started 26

associated with the network. Backups could be a continuous, on-
going part of system operation with minimal overhead. Backups
from multiple computers (a corporate LAN, for example) would
be highly efficient due to the massive duplication of operating
system and application files.



Safeguards

Protection from pathological behavior

Pathological behavior is typified by repeated inappropriate be-
havior in a portion of the network. Examples include flooding a
repository with files or data blocks, cascading queries, etc. The
general method of protecting the network from these threats
involves throttling and timeouts.

Protection from malicious users or hosts

All hosts are controlled by parameters that set the rate at which
traffic will be generated and the amount of time that will be
allowed to elapse before a request is discarded. Malicious users
or hosts may be able to cause adverse effects, but their scope
and duration should be limited. The preponderance of hosts
operating in a restricted mode should leave these mis-behaved
systems with no more influence than with any other networking
technology.

Protection from censorship

Censorship can be viewed as an attempt to erase or obliterate
data. The network architecture makes it virtually impossible to
erase data once it has been introduced to multiple hosts. The
data tends to take on a life of its own and to be replicated
unpredictably. Obliterating the data would involve corrupting
individual data blocks, or the File Description block. It is
computationally infeasible to prepare bogus data blocks with the

27



Safeguards 28

same L-Hash signature. The ability to cryptographically sign
the File Description and Block List provides protection against
censors who might try to substitute corrupt data in place of
the original. Censors are thus reduced to simply malicious or
pathological users.

Protection from host failures

Host failures are a simple case of a loss of connectivity. The
decentralized, redundant operation of the network anticipates
such failures as a routine part of its activity.

Protection from communication failures

Communication failures take two forms: loss of connectivity
and data corruption. The decentralized architecture and the
autonomous redundancy of data storage minimizes the effects
of any loss of connectivity to any particular host or group of
hosts. Data corruption is prevented by multiple layers of robust
verification (using L-Hash) and error correction on files.

Vulnerabilities and Countermeasures

It is understood that any distributed networking technology such
as this will be exposed to a number of intentional and accidental
threats. Since it is expected that the software will run on home
and business computers without a knowledgeable administrative
staff every effort must be made to design a system with inherent
immunity to malicious or pathological behavior by one or more



Safeguards 29

nodes in the network. By looking at each of the five block types
it is possible to examine the effects of introducing mal-formed
or malicious data into the network.



Threat Description,
Mitigation and
Anticipated Effect

UD-1 Introducing high volumes of gibberish data blocks

Inherently limited by outbound band-
width of malicious host

Irritating waste of storage.
No major network effect.

HL-1 Introducing high volumes of Host List blocks with invalid
Host Ids

Automatic expiration based on Host Longevity

Diversion of Query and Propa-
gation bandwidth.

Minor degradation.
FD-1 File Description does not match file contents

Users can add descriptions based on their
experience with the content

30



Threat Description, Mitigation and Anticipated Effect 31

Users may need to craft bet-
ter Query Blocks to eliminate
these SPAM results.

Irritating waste of resources
No major network effect.

FD-2 Introducing high volumes of File Description blocks with
bad Block Lists

Users can add descriptions based on their
experience with the content

Users may need to craft bet-
ter Query Blocks to eliminate
these SPAM results.

Only affects files returned by
popular Queries.

Irritating waste of resources
No major network effect.

FD-3 Introducing high volumes of File Description blocks which
rebuild gibberish or malicious (viral) files.

Users can add descriptions based on their
experience with the content



Threat Description, Mitigation and Anticipated Effect 32

Users may need to craft bet-
ter Query Blocks to eliminate
these SPAM results.

Only affects files returned by
popular Queries.

Irritating waste of resources
No major network effect.
DL-1 Introducing high volumes of bogus Directory List blocks
DL blocks expire based on Host longevity

Queries may return invalid host
information for some User Data
requests.

No major network effect

QU-1 Introducing high volumes of failing Queries with high
FanOut= values

Hosts will limit Discard= timeout.
Queries will run only once on each host

Hosts will limit FanOut=



Threat Description, Mitigation and Anticipated Effect 33

Query cascade.
High bandwidth utilization.
Low processing impact.

QU-2 Introducing high volumes of succeeding Queries with
bogus ReplyTo= hosts

Hosts will limit Discard= timeout.
Hosts will limit ReplyMax=

Hosts will limit BlockInterval=

Queries will run only once on each host

HTTP implementations will stop after
first failure to a host; host will be marked
as expired.

Distributed-Denial-of-Service to
affected host.

High network impact on tar-
geted host



Conceptual Background
for Modeling the Data
Universe

Brian McMillin

Modeling the performance of the Data Universe requires a
certain background in the capacities of the storage and com-
munication resources to be used. This discussion breaks each
aspect of the Data Universe down into simple elements that build
progressively toward the ultimate goal. With luck and patience,
the performance of each level of sophistication can be modeled
and some idea of the performance of the overall concept can be
achieved.

The Data Universe is a conceptual subset distributed across
the current Internet. Communication links exist between Host
computers and join the elements within the Data Universe. Data
also flows between the Data Universe and the Outside World, by
which I mean the rest of the Internet.

Conceptual Steps for Building the
Data Universe

1. Define a Host - Storage, Bandwidth and Processing capa-
bilities

2. Each Host has a unique address H, perhaps consisting of
IP:Port

34



Conceptual Background for Modeling the Data Universe 35

3. The repository of a given host H may store at most SH
blocks.

4. Each Host can attempt to send data blocks to any other
host, but there is no guarantee of success

5. Each Host is interconnected with bandwidth capable of
sending and receiving RH blocks per second.

6. Host processors are capable of some level of processing
based on the content of their repositories.

7. Holographic Diffusion

8. Normal (gaseous) Diffusion moves particles randomly to
“nearby” positions in space

9. Holographic Diffusion, for want of a better term, copies
data blocks randomly to connected positions in a physical
address space

10. At a rate RH, each host will select a random block from
SH and attempt to send it to another host address.

11. Fundamental Communication Features
1. Random Blocks sent to random Hosts
2. One-way datagrams
3. Point-to-point: No broadcast or multicast needed

1. On the other hand...couple it with USENET storage and broadcast
NTP



Conceptual Background for Modeling the Data Universe 36

4. Latency Independent
5. Connectionless

6. No Confirmation
1. A data block DN, received at host H will overwrite a
randomly selected block in SH.

2. A particular data block DN will occur at most one time in
SH.

3. Assume communication between Hosts is a connected
graph, like the Internet.

1. Explore the ramifications of Connected Subnets (like computers bet

rewalls)
2. Extend addressability to cover such situations

3. Explore the tradeoffs involved in making the communication two-way

1. Tends (very slowly) toward static equilibrium
2. Not very efficient
3. Dynamically Add and Remove Hosts

4. Adding and Removing Hosts corresponds to Computers
coming online or going offline or changing IPs

5. Htotal is now a function of time



Conceptual Background for Modeling the Data Universe 37

6. New Hosts per second given by MHtotal / Mt
7. Dynamically Add and Remove Data Blocks

8. Adding block DN to a host is equivalent to receiving the
block from another Host or the Outside World

9. Removing block DN from a host is what happens when a
block is overwritten by a different received block

10. Removing all copies of block DN from all Hosts is what

happens when a block expires

1. Expiration simply means the block will be preferentially overwritt
received blocks

1. Btotal is now a function of time

2. New Data Blocks per second given by MBtotal / Mt

3. Consider the ramifications of the same block DN being
added at multiple hosts (i.e. popular .MP3 files).

4. Directed Replication - Make the Holographic Diffusion
process more efficient

5. Add the concept of a Host List Block which can propagate
from Host to Host like any other Block

6. Hosts periodically build new Host List Blocks based on
knowledge of successful communication and the contents
of other Host List blocks that may have been received.

7. Gives the transmissions a vastly better chance of succeed-
ing



Conceptual Background for Modeling the Data Universe 38

8. Requires Hosts to examine the content of the data Blocks

9. Implies some form of time synchronization and expiration
of obsolete data

10. Group Related Data Blocks - Create the traditional concept
of a File.

11. Allows meaningful data to be exchanged between the
Data Universe and the Outside World

12. Add the concept of a File Description Block which can
propagate like any other Block

13. Describes the file by name, date, author, contents, etc.

14. Lists the additional data Blocks required to reassemble the
original data.

15. Include a signature for the data in the entire file, so that

1. Successful reconstruction of the entire file can be verified.

2. Multiple copies of the same file with different names or descripti
n be grouped.

3. Different files (versions?) with the same name or description can
t separate.

4. Annotations referring to a specific file can be added in the form
plemental File Descriptions

1. Here we should discuss the ramifications of the choice of
Block size



Conceptual Background for Modeling the Data Universe 39

10.

11.

12.

13.

Initial suggestion is 65500 bytes, leaving room for the
Block ID to be stored with the Block

Fits in a single IPv4 packet (probably). Does this really
matter?

Implies a chaining or “include” requirement for File De-
scription Blocks

8192 byte file system “clusters” are way too small. 20th
century design constraints in the 21st century.

. Queries - Provide a method to select particular data to be

extracted from the Data Universe

. Allow searching File Description Blocks on a host.

Cause a host to search for the required data Blocks (by ID)
to rebuild a file in the Outside World.

May be unsuccessful if the necessary Blocks are not present
in the Host’s repository.

Queries are non-deterministic and must be designed to
expire.

Query Propagation - Provide a method to get the data
Blocks I want onto my specific Host

Query Blocks have four states: Pending, Successful, Un-
successful, and Expired.

Successful Queries generate one or more result Blocks
directed back to a Host specified by the originator.



Conceptual Background for Modeling the Data Universe 40

14. Unsuccessful Queries propagate intact to one or more
Hosts (like ripples in a pond) to be tried again.

15. Queries for “popular” data are more likely to be successful
because more copies of the target exist.

16. Query Optimization - Make it efficient enough to be useful

1. Add the concept of a Directory List Block.

2. List of Block Ids known to reside on a particular Host
(at some point in time, maybe not now...)

3. Variant has data for multiple Hosts, which could give
a choice of Hosts for the same Block.

4. Add the concept of an Index Block.

5. List of File Description Block Ids known to contain a
particular keyword or feature

6. Expand it to include keywords in file contents, not
just descriptions

7. Consider the effects of a Fan Out parameter and
Queries returning multiple Blocks

1. Fan Out > 1 propagates unsuccessful Queries exponentially u
pire

2. Successful Queries may return multiple Blocks to the design:
ating” Host

3. Explore ways to prevent pathological or malicious behavior.

4. Consider the effects of Universe Spiders



Conceptual Background for Modeling the Data Universe 41

1. Web crawlers adapted to life in the Data Universe.

2. Automated systems that rebuild data files and generate in
content.

3. Dredge up rarely accessed data and keep multiple copies i

4. Use error recovery mechanisms to recreate blocks that are
available

17. Intelligent Insertion - Data transport from the Outside
World

18. Automate useful Data, File Description, and Index Block
creation from data in the Outside World.

19. Extract metadata from image files

20. Extract individual files from archives (.ZIP or .TAR) and
add both the files and the complete archive.

21. Fault Recovery - Make it robust enough to be useful
22. Implement Error Correction Algorithms.
23. Recover missing Blocks.

24. Correct the (vanishingly small) chance of duplicate Block
IDs

25. Security - Answer privacy concerns
26. Encrypt the data as it is added to prevent eavesdropping

27. Add cryptographic signatures to ensure authenticity



Conceptual Background for Modeling the Data Universe 42

28. Manage Cryptographic Keys
29. No Key Revocation

1. You can say that documents signed with this key after a certain ti

not valid

2. If the encryption key is compromised an adversary could still forg

ments

3. If the decryption key is compromised *ALL* documents using it becc

nerable

4. This is not a new or unique problem, just important since the Datc
rse is, by design, an archive of all such documents.

1. Computational Queries - Massively Parallel Distributed
Computing
2. Perhaps Javascript in Query Blocks

3. Collect input data from the Data Universe, process it, and
return Results to the Universe.

4. Effects of possible pathological behavior

5. Using the Block “include” feature would allow large code
libraries, etc.

1. Would never suffer from the “wrong version of the .DLL” problem

2. Ensures the code always runs as the author wrote it. Good or Bad.



Conceptual Background for Modeling the Data Universe 43

Parameters Required for Modeling

Data Block contents are denoted by DN, N 0 {0 .. 2128-1} where
N is the Block ID. This is for the MD5 version. N is divided into
two distinct subsets: “defined” and “undefined”. The “defined”
subset is the set for which DN is known. Total Actual Unique
Data Blocks Btotal in the Data Universe is a the number of
elements in the “defined” subset of N. Physical Host addresses
Ho{o0. 248-1} (assuming naming using IPv4 address space
of the form IP:Port ). H is divided into two distinct subsets:
“implemented” and “not implemented” depending on whether
a host with host address H exists and can communicate with the
network.

Total number of real Hosts Htotal is a the number of elements in
the implemented subset of H.

Storage per Host SH = Number of Blocks that can be stored on
Host H. Hosts that are “not implemented” have zero space.

Total Physical Storage in the Data Universe is Stotal = 3 SH.

Diffusion Rate RH is the number of transmissions per second
attempted by Host H. Hosts may have different rates based on
available bandwidth.

Suggested Models

Start with an even distribution of Btotal / Htotal Blocks stored
on each Host.

Compute the storage utilization on each Host after blocks diffuse
for time T.



Conceptual Background for Modeling the Data Universe 44

Prove that the equilibrium number of Block copies is Stotal /
Btotal, in the limit as time T Y 4 What if the initial condition
includes a distribution with more than Btotal / Htotal Blocks
stored on each Host. In this case, “popular” data Blocks will
already exist on multiple hosts. Note the restriction that a
particular Block DN can never be duplicated on the same host.

With each different level of sophistication, design models that
allow answers to the following questions to be derived.

1. How many copies of a specific data block DN will exist in
the Data Universe?

2. How many Hosts will be involved in a Query for a
particular data block DN? Typical and worst case.

3. What is the optimum timeout for Query Blocks?

4. From any Host in the Universe, how long should it take to
rebuild a file of a particular size?

5. Is there an optimum bandwidth for a given repository
size? Is there any correlation at all?

6. What are the effects of changing the rate at which new
data is introduced from the Outside World?

7. What are the effects of changing the rate at which physical
storage is added to the Universe?

8. How much network traffic will be devoted to Query
processing and how much to permanent data “diffusion”?

9. How much storage will be devoted to permanent data, and
how much to blocks that will expire?



Conceptual Background for Modeling the Data Universe 45

10. How much storage will be devoted to File Descriptions and
how much to content Blocks?

Consider the effects of a technological adversary capable of
fabricating gibberish data Blocks with duplicate hash Ids. This
is considered computationally infeasible now, but Quantum
Computing or other “outside the box” developments might make
understanding the ramifications important. Is the minimum 128-
bit Block ID appropriate?



	Contents
	Data Universe™ Specifications
	Abstract

	Introduction
	Security and Intellectual Property
	Limitations of Prior Systems
	Glossary
	Implementation
	Getting Started
	Data Formats
	Future Extensions

	Safeguards
	Vulnerabilities and Countermeasures

	Threat Description, Mitigation and Anticipated Effect
	Conceptual Background for Modeling the Data Universe
	Conceptual Steps for Building the Data Universe
	Parameters Required for Modeling
	Suggested Models


