
© 2018 Brian McMillin - - DRAFT 2018-04-12

This paper describes a Single Instruction Multiple Data (SIMD) computer architecture. Novel features include
a sequential-read addressing scheme and branchless conditionals. These two features ensure that all reads
(code and data) are anticipated and cached. This just-in-time approach ensures that all memory reads are
handled in a timely manner.

We introduce the concept of processing lanes corresponding to the data access and logic operations
performed by each of the parallel processors. These parallel processors are specialized in their functionality
and are referred to as Binary Logic Units (BLUs). In addition to parallel operations, stepping through a set of
very compact states for each lane during each instruction cycle allows the creation of virtual lanes that are
handled sequentially by each of the BLUs. The use of virtual lanes allows the apparent parallelism to be
increased beyond the scope of the physical hardware.

Arithmetic extensions to the basic BLU design allow for compatible floating-point operations to be
performed in a power-efficient manner using very minimal additional hardware complexity.

Abstract
Contents
Background
SIMD Observations
Philosophy

Memory Addressing
Memory Reads
Memory Writes
Memory Cycle Controller

Branchless Conditionals
Lookup Tables and Case Statements
Memory Organization
Program Loader
Concerning Subroutines
Instruction Set
I/O: Host Setup and Retrieval
Binary Logic Unit (BLU)

Little Elm Architecture

Abstract

Contents

Reference Implementation
Concerning Multiply and Divide
Binary Arithmetic Unit (BAU)

SIMD architectures are useful for accelerating the solution to problems that can be expressed as a large
number of wholly independent, parallel computations. The same sequence of manipulations is performed
simultaneously on different data items.

This requires careful selection of the specific problems that are best suited to parallelism, organization of the
data for input, algorithm to be applied, and retrieval of the final results. The Single Instruction aspect shares
hardware for instruction sequencing and decode among all parallel processing units.

Programming languages take a concept from the realm of mathematics and describe numeric values using
names called variables. At the most basic level a variable is assigned an address in physical memory.
Rudimentary hardware implementations always access the specific address when the value is required.

More advanced designs realize that
1. memory addresses become too large and unwieldy
2. memory accesses are too slow
and implement various caching schemes, such as
1. fast memory caches and anticipatory read of adjacent memory addresses
2. registers to give fast access and shorter addresses to values
3. a stack to reduce the addressing overhead
4. delayed or eliminated memory writes of intermediate values

Stack implementations attempt to solve a related problem by arranging to have a Last-In-First-Out access
mechanism that makes intermediate result values available immediately. This eliminates the explicit
addressing from some machine instructions but does not eliminate the address requirements in the general
case of LOAD and STORE to specific addresses.

Another concept from the world of mathematics involves vectors and matrices. The idea is to allow several
related values to be referred to by a single name, but distinguished by a subscript. This makes describing
and understanding an algorithm much easier for the algorithm designer.

In the software world, this subscripting concept in implemented in the form of arrays. A fixed, contiguous
area of memory is given a name which refers to its base address. An integer index is used to select an offset
from the base and refers to the value stored in that array element. Hardware could be implemented to
facilitate this common indexing operation, however this is rarely done. Instead the index operations are
computed by the processor’s arithmetic unit just like program data.

This sharing of arithmetic operations on memory addresses and data values was a wonderful insight from
early computer science. Unfortunately, in the modern world, strict adherence to this concept leads to poorly
written, unintelligible programs, slow hardware implementations, a great potential for corrupted results and
the opportunity for malicious exploits.

Background

When an algorithm is expressed in mathematical terms it often becomes clear which arithmetic operations
must be done sequentially and which are ideally performed in parallel. When the same algorithm is
expressed in a typical programming language it is turned into a pedantic sequence of iterations over a small
set of steps. In order to achieve any semblance of efficienty on modern hardware, the code is then
subjected to an Optimization process. This optimization will typically include such things as the assignment
of particular values to registers instead of main memory, elimination of redundant computations and loop
unrolling to eliminate unnecessary branches. Optimizers for computers with parallel architecture can often
detect opportunities for parallelism, despite the fact that the algorithm was expressed in a serial form.

Consider an algorithm designed from the beginning to be implemented on a truly parallel architecture. Many
of these circuitous, inefficient steps can be eliminated. In particular, the SIMD implementation allows us to
ensure that the algorithm completes in an exact time (number of cycles) and that all data values are
accessed in a sequence that can be determined during program compilation. This allows the elimination of
run-time address calculations and program branches. Techniques to accomplish this are described for this
architecture.

1. All parallel processors must operate synchronously using the same decoded instructions. Results may
be different among processors only due to differences in input data.

2. Conditional execution of specific instructions is possible within individual processors but will not affect
the instruction sequence or timing being performed across the set of all processors. This is the basis of
Branchless Conditionals.

3. A precision simulation of the hardware running a particular algorithm is possible. Algorithm simulation
reveals the precise sequence of memory accesses required for all data values and program code. This
sequence must be the same for all parallel processors.

4. Using simulation it is possible for the compiler to structure a program such that all memory reads are
made to sequential addresses. All that is necessary is to ensure that the correct values were previously
written to those sequential locations. This is the basis of Sequential-Read Addressing.

5. It is possible to perform the same BLU operation on multiple data streams by stepping through a series
of BLU states - one for each stream. By reducing the register set and status bits required by each BLU
it becomes reasonable to create multiple Virtual Lanes with minimal added hardware.

6. Combining selected numbers of Virtual and Physical lanes allows the designer to fine-tune the
performance of a particular design and tailor it to certain applications.

7. It is possible to implement cross-lane communication by allowing memory write operations into
adjacent physical or virtual lanes. The topology of the address space ensures that the lane adjacency is
ring-like and that all cross-lane signalling is symmetrical.

It appears that the fundamental concept of a Random Memory Read is both flawed and unnecesssary in
many cases. The flaw is that the algorithm must wait while desired address is be presented to the memory
subsystem, the memory is accessed, and the result returned. The unnecesssary part comes from the
observation that the desired value could be equivalently obtained with a sequential read.

SIMD Observations

Philosophy

The goal here is to reduce complexity and increase speed.

This architecture is implemented using only sequential memory reads and fire-and-forget asynchronous,
queued random memory writes. All memory access is to full RAM rows; writes do not require prefetch of the
row.

Algorithm simulation will identify the precise sequence in which input values will be needed for a
computation. Simulation will follow standard optimization steps including common subexpression
elimination, loop unrolling, and function inlining.

Instead of referencing a memory address assigned to a variable, we view the value as being needed at a
particular time. This time corresponds to the sequential location of the required memory reference.

Thus we eliminate the correspondence between a program variable and memory address in the hardware
implementation.

Whenever a result is computed, the compiler uses its omniscient simulation to anticipate the next time that
value could possibly be used. A memory write stores the value in the sequential location that will be
accessed at that time.

Eliminating the address computation overhead that is traditionally required to store the value in a particular
variable further streamlines the operation. This allows:
1. Elimination of all run-time computation of memory addresses,
2. Fully automatic Register usage optimization,
3. Elimination of speculative memory reads or code execution.

The compiler is acutely aware of the sequence of values and operations that are called for. This architecture
allows that knowledge to be conveyed directly to the hardware without the guesswork implemented by
traditional designs.

The computed read/write sequence is precisely the same for all processor lanes.

Memory RAM rows are read based on a sequential counter (the Current Read Register) that can be thought
of as corresponding to the time index in the simulation of the algorithm.

The row being read may be either program code or data. These will be interspersed in actual memory so
that when the last instruction of the current row is executed, the next memory read will have automatically
loaded the next row of instructions. That instruction row will be latched into the instruction word shift
register to be used to specify the next instructions. The next row read will be the program data to be used
next.

Memory Addressing

Memory Reads

Frequently, consecutive instructions will need access to the same input value, or a specific instruction will
not actually need an input value. In order to support these cases efficiently, each instruction contains a
control bit that indicates when to step to the next input value. The compiler will ensure that there are no
conflicts between stepping to the next input value and loading the next row of instructions.

Computed values will be required at some point in the future. This future time corresponds to the actual
memory address that will be used as input at that time. A memory write will store the value into that future
time slot.

Thus, all memory reads are purely sequential but memory writes are random.

In the SIMD architecture all memory operations are made to physical memory RAM rows. This means that
the write operations always change the contents of an entire RAM row. This eliminates the need for read-
before-write used by architectures that allow selective modification of words within a RAM row.

It is expected that rows to be written will be placed into a (short) write queue. This will allow consecutive
instructions to initiate write operations without stalling processor operation to wait for the write to complete.

All instruction OpCodes have a single “address” which represents the time in the future that the computed
value will be needed.
1. This may be zero in which case no actual write will occur and the accumulator value will simply be used
by the next instruction.
2. The “address” may be a small number which is interpreted as a reference to a slot in the memory read
cache. This can be viewed as a register operation which will make the value available as needed but will not
cause a physical memory cycle or delay in program execution.
3. The “address” may be a number larger than the size of the read cache. This will cause the output value to
be placed into the RAM write queue for subsequent use. The actual memory address will be computed as
the sum of the Current Read Register and the “address” field of the OpCode. This eliminates absolute
addressing and shortens the required bit fields. The required memory write cycle will occur under control of
the memory cycle controller at some future time.

In the conceptual implementation RAM will be accessed strictly with alternating Read and Write cycles
occurring with every machine instruction. Reads will be from addresses contained in a continuously
incrementing Current Read Register. Writes will place the results (accumulator value) of the current OpCode
into the “address” specified in the instruction.

Further, when the last OpCode in the current program row is executed an additional memory Read cycle
would be inserted to load the next program instruction row.

Obviously performing a memory read and write cycle with every instruction would be highly inefficient and
unnecessary in most cases. The compiler/simulator’s advance knowledge of the timing of data requirements
allows the compiler to insert read and write “hints” into each instruction, thus explicitly controlling the

Memory Writes

Memory Cycle Controller

behavior of the memory controller.

Actual implementations will include a fast access Read Queue analgous to a register set on other
architectures. This forms the RAM read-ahead cache which is also accessible by short-distance writes.
Longer-distance writes would use a separate Write Queue that would actually initiate physical memory write
cycles.

The general rules for each memory access cycle would be:
1. Perform the next Write if the Write Queue is full
2. Perform the next Read if there is an empty slot in the Read Queue
3. Perform the next Write if there is anything in the Write Queue

The host (external) interface is used for program and data load. It would cause the insertion of RAM row
data and physical addresses into the Write Queue. This allows for Initial Program Load, as well as
concurrent load of the next Application Program or data during program execution.

Many architectures (particularly microcontrollers) implement conditionals in the form of an instruction that
tests a state and then inhibits the execution of the next instruction if a condition is satisfied. In the present
case, we take this concept further. Blocks of instructions can be enabled or disabled. By using a conditional
counter we allow nesting of control structures. The management of these conditions is controlled by a bit
field in every instruction.

For deterministic algorithms backward branches (loops) exist only to make the code more compact: they
are never required. The present architecture eliminates them completely, thus provably ensuring fully
deterministic behavior.

Conditional execution is implemented using a single counter Cond. The operation sequence allows IF…
THEN…ELSE…END control structures to be correctly evaluated in each lane. By incrementing and
decrementing a simple counter nested control structures can be created.

Two bits from each instruction word are used to express the IF, ELSE and END operations. These condition
code bits are always evaluated in each lane for each instruction. They test that lane’s Toggle bit and set that
lane’s Cond counter, independent of the operation of other lanes.

Rules for BLU and memory operations are:
1. Latch BLU computation result into Acc only if Cond is zero.
2. Write Acc to the current write address if Cond is zero, otherwise write the current input value to the
current write address.

The fundamental rule for the present architecture is that all memory reads must be from sequential
addresses. This makes the common programming technique of using lookup tables problematic. In any
case, a SIMD architecture must replicate the lookup tables for each of the parallel cores and allow them to

Branchless Conditionals

Lookup Tables and Case Statements

be accessed independently. Further, these independent memory accesses must not cause interference or
side-effects that would impact the deterministic timing of the operations.

Similarly, program control structures such as CASE statements perform a one-of-many selection of
operations within the algorithm.

In keeping with the architecture’s design philosophy we provide mechanisms to select the desired values or
instructions from the sequential stream of all possible options. In particular, see the ARRAY and CASE
instructions described later.

It is expected that the data lookup tables used here will be relatively small. Selection of elements from large
datasets will have been performed by the host (external) control processor prior to setup and initiation of the
algorithm.

Conceptually the physical memory organization of a program might look like this for a four-lane, non virtual
implementation with four OpCodes per word:

Row	00:	|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|
Row	01:	|				Data			|				Data			|				Data			|				Data			|
Row	02:	|				Data			|				Data			|				Data			|				Data			|
Row	03:	|				Data			|				Data			|				Data			|				Data			|
Row	04:	|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|
Row	05:	|				Data			|				Data			|				Data			|				Data			|

Every memory row is either OpCodes or data and they are interspersed such that the OpCodes immediately
preceed the data that they reference. When the last OpCode in a row is executed, the next-up memory row
will actually be the next row of program instructions.

For an implementation with four physical lanes and two virtual lanes the memory layout would look like this:

Row	00:	|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|
Row	01:	|		Data	V0		|		Data	V0		|		Data	V0		|		Data	V0		|
Row	02:	|		Data	V1		|		Data	V1		|		Data	V1		|		Data	V1		|
Row	03:	|		Data	V0		|		Data	V0		|		Data	V0		|		Data	V0		|
Row	04:	|		Data	V1		|		Data	V1		|		Data	V1		|		Data	V1		|
Row	05:	|		Data	V0		|		Data	V0		|		Data	V0		|		Data	V0		|
Row	06:	|		Data	V1		|		Data	V1		|		Data	V1		|		Data	V1		|
Row	07:	|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|
Row	08:	|		Data	V0		|		Data	V0		|		Data	V0		|		Data	V0		|
Row	09:	|		Data	V1		|		Data	V1		|		Data	V1		|		Data	V1		|

Thus, the data for all virtual lanes are stored in blocks of consecutive memory rows. Addressing of data from
each of the virtual lanes is handled transparently during each logical instruction cycle. This concept is
extended to whatever number of virtual lanes are included in the particular implementation.

The Data operands used within a function may be (1) input data to the function, (2) constant values or (3)

Memory Organization

previously computed results. After loading the physical memory and prior to function execution the memory
rows might look like this:

Row	00:	|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|
Row	01:	|				Data			|				Data			|				Data			|				Data			|
Row	02:	|						|						|						|						|
Row	03:	|						|						|						|						|
Row	04:	|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|
Row	05:	|				Data			|				Data			|				Data			|				Data			|

Here the “....” values are Don’t Care placeholders that will be filled by intermediate results as the function
executes. Frequently these intermediate values will make up the bulk of the actual memory usage. Further it
would be convenient for a complete program to be stored in a compact block without requiring (1) lots of
null values, or (2) addresses to be associated with each row. The second point is important if we want to be
able to load a program into the BLU in a streaming fashion from the external (host) interface.

In order to accomplish this monolithic-load we expect the use of a program loader on the front of the actual
program. The loader will consist of the instructions necessary to unpack the code+data rows into correct
positions for actual execution. This will have the additional advantage of allowing frequently-used constant
data to occur only once during the load and yet be correctly placed in multiple locations as required for
execution.

Row	00:	|Op|Op|Op|Op|--|--|--|--|--|--|--|--|--|--|--|--|		<<<<<	Loader
Row	01:	|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|				--|
Row	02:	|				Data			|				Data			|				Data			|				Data			|						|	Compact
Row	03:	|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|						|	Code+Data
Row	04:	|				Data			|				Data			|				Data			|				Data			|				--|

Row	05:	|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|		<<<<<	Program	execution	begins	here
Row	06:	|				Data			|				Data			|				Data			|				Data			|
Row	07:	|						|						|						|						|
Row	08:	|						|						|						|						|
Row	09:	|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|
Row	10:	|				Data			|				Data			|				Data			|				Data			|

In the example the loader in RAM Row 00 copies the next four RAM rows into the correct locations in rows
05 to 10. The “–” OpCodes represent CODE instructions, the first of which actually loads RAM Row 05 (the
first instructions in the actual function) for execution. This provides a compact method of loading a program,
even though the actual execution of that program may use extravagant amounts of memory for intermediate
results. Note also that all aspects of the memory accesses are designed to be relocatable: All addressing is
relative and uses positive offsets.

Program Loader

Concerning Subroutines

It is important to be able to package standardized “library functions” in a convenient form so that optimized
solutions to common problems are available to the programmer. Library functions will have very specific,
determininstic behavior in this architecture. The size and input/output interface will be well defined.
Conceptually, a library function will be similar to the code block illustrated above, but with added interface
elements similar to this:

Row	01:	|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|		<<<<<	Calling	Program

Row	02:	|Op|Op|--|--|--|--|--|--|--|--|--|--|--|--|--|--|		<<<<<	Call	Parameters
Row	03:	|			Param			|			Param			|			Param			|			Param			|
Row	04:	|			Param			|			Param			|			Param			|			Param			|
Row	05:	|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|		<<<<<	Function	Entry
Row	06:	|				Data			|				Data			|				Data			|				Data			|
Row	07:	|						|						|						|						|
Row	08:	|						|						|						|						|
Row	09:	|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|
Row	10:	|				Data			|				Data			|				Data			|				Data			|
Row	11:	|						|						|						|						|

Row	12:	|Op|Op|--|--|--|--|--|--|--|--|--|--|--|--|--|--|		<<<<<	Return	Point
Row	13:	|			Result		|			Result		|			Result		|			Result		|
Row	14:	|			Result		|			Result		|			Result		|			Result		|

Row	15:	|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|Op|		<<<<<	Caller	Continues
Row	16:	|				Data			|				Data			|				Data			|				Data			|
Row	17:	|						|						|						|						|
Row	18:	|						|						|						|						|

The sequence of events is as follows:
1. The Calling Program computes a set of parameters and places them in memory slots preceding the
Function Entry point.
2. The Call Parameters code is part of the library function and is responsible for placing the parameters into
appropriate slots within the Function Body itself.
3. The Row labeled Function Entry and following are the actual body of the function. The function computes
the desired results and stores them in slots following the Row labeled Return Point.
4. The Function completes and hits the code Row labelled Return Point, which is properly considered part
of the Calling program.
5. The instructions beginning at Return Point distribute the Result values to the correct parts of the Calling
program.
6. Execution continues with the Calling program.

This sequence separates Calling and Called code and makes for independent modules, even though the
functions themselves are rendered as in-line code. In many cases this will simplify design, debugging and
simulation by giving standardized or frequently-used functions a consistent appearance.

Production code, however, will undoubtedly use an intelligent linker to compact the code and eliminate the
redundant data movement of Parameters and Results described here.

Instruction Set

We envision the instruction set to be a minimal set of very fast operations. The goal is to keep the footprint
area and power consumption of each BLU implementation to a minimum. This enables all logic modules to
be aligned with the memory cache bits when laid out on the chip.

The following table represents a candidate list of BLU machine instructions and OpCodes. Selection of
instructions to be included in a final design will be made on the basis of utility and gate count.

There are basically four different instruction formats.

Format Description

	ccnn	0000	00zz	iiii	 Non-Write and Control Instructions

	ccnn	0000	zzbb	bbbb	 Bit Test/Clear/Set Instructions

	ccnn	iiii	1111	eeee	

	eeee	eeee	eeee	eeee	
Binary operations with long write addresses

	ccnn	iiii	dddd	dddd	 Binary operations with short write addresses

The full set of OpCodes is represented by zzzz iiii. Not all of these 256 OpCodes are implemented.
Unimplemented OpCodes yield undefined results.

Sixteen OpCodes of the form 0000 iiii are selected to be applicable to both the Short-Write and Long-Write
instructions. This allows common sequences of the form compute…store to be specified in a single
instruction.

In addition, 192 instructions of the form xxbb bbbb are reserved to directly test, clear and set individual bits
in Acc.

	zzzz	iiii	 Instruction Description

	0001	0000	 CODE Latch next Code Row. No change to Acc

	0001	0001	 HALT Terminate algorithm. Signal completion to host

0 1 2 3 4 5 6 7 8 9 A B C

0 LOAD PUT PUTW PUTE PUTN PUTS ADD NEG NOT AND OR XOR ROT

1 CODE HALT END PARITY ZERO LOG COUNT DEC REVERSE ELSEIF CASE BREAK LFSR

2 -- -- -- -- -- -- -- -- -- -- -- -- --

3 MUL DIV REM -- -- -- -- -- COMP COMP COMP COMP COMP

4-7 TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST TEST

8-B CLEAR CLEAR CLEAR CLEAR CLEAR CLEAR CLEAR CLEAR CLEAR CLEAR CLEAR CLEAR CLEAR

C-F SET SET SET SET SET SET SET SET SET SET SET SET SET

Control Instructions

	0001	0010	 END Set Cond to zero, closing all conditionals

	0001	1011	 BREAK Set Cond to 11 1111.

	0001	1001	 ELSEIF Decrement Cond only if greater than one.

	0001	1101	 OUTPUT Queue the current Write for external (host) interface

	zzzz	iiii	 Instruction Description

	01bb	bbbb	 TEST 	b	 Copy the value of bit 	b	 to Toggle. No change to Acc

	10bb	bbbb	 CLEAR 	b	 Set bit 	b	 in Acc to 0

	11bb	bbbb	 SET 	b	 Set bit 	b	 in Acc to 1

	zzzz	iiii	 Instruction Description

	0000	0000	 LOAD Copy Next to Acc

	0001	1111	 ARRAY Decrement Acc. If zero, Increment Cond and copy Next to Acc

	0000	0001	 PUT No change to Acc

	0000	0010	 PUTW Write to Physical Lane on West, No change to Acc

	0000	0011	 PUTE Write to Physical Lane on East, No change to Acc

	0000	0100	 PUTN Write to Virtual Lane on North, No change to Acc

	0000	0101	 PUTS Write to Virtual Lane on South, No change to Acc

	zzzz	iiii	 Instruction Description

	0000	0110	 ADD Integer ADD Next and Acc

	zzzz	iiii	 Instruction Description

	0000	0111	 NEG Integer Twos Complement Negate Acc

Bit Instructions

Data Copy Instructions

Arithmetic Instructions

Single Operand Instructions

	0000	1000	 NOT Logical NOT Acc

	0001	0011	 PARITY Set Toggle from Acc. No change to Acc

	0001	0100	 ZERO Set Toggle if Acc is zero. No change to Acc

	0001	0101	 LOG Set Acc to number of highest bit set in Acc

	0001	0110	 COUNT Set Acc to total number bits set in Acc

	0001	1110	 INC Increment Acc. Set Toggle if result is negative

	0001	0111	 DEC Decrement Acc. Set Toggle if result is negative

	0001	1000	 REVERSE Reverse the order of all 64 bits in Acc

	0001	1010	 CASE If Acc is zero set Cond to zero. Decrement Acc.

	zzzz	iiii	 Instruction Description

	0000	1001	 AND Logical AND Next and Acc

	0000	1010	 OR Logical OR Next and Acc

	0000	1011	 XOR Logical XOR Next and Acc

	0000	1100	 ROT Bitwise Rotate Left Next bits in Acc

	0000	1101	 MASKL Bitwise Mask Left Next bits in Acc

	0000	1110	 MASKR Bitwise Mask Right Next bits in Acc

	0000	1111	 EXTEND Bitwise Extend bit Next leftward in Acc

	0001	1100	 LFSR Linear Feedback Shift Register using Next and Acc

	zzzz	iiii	 Instruction Description

	0010	----	 UNUSED 16 Unused OpCode Block

	0011	----	 UNUSED 16 Unused OpCode Block (reserved for BAU)

The cc field is the condition code used to enable branchless conditional execution.

Condition Code Operation Description

0 0 No change to Cond

Dual Operand Instructions

0 1 IF Increment Cond if Toggle is zero

1 0 ELSE Invert the low-order bit of Cond

1 1 END Decrement Cond if it is non-zero

All instructions latch BLU result into Acc only if Cond is zero.

In general expect instructions to write the current Acc value to the write address. There are exceptions, so,
to be specific:
1. If write Address is zero, do not write
2. If OpCode is PUTx and Cond is non-zero, write Next instead.
3. If Cond is zero, write Acc to write address.

The nn field is the Next Input code used to control selective stepping through the sequential memory reads
and the sequential read cache.

Next Input Code Operation Description

0 0 REP Repeat the current Input Value

0 1 REG Step to the next cache value

1 0 RAM Step to the next RAM value

1 1 ALL Step both Cache and RAM indexes

The dddd dddd field is the destination write address. This 8-bit value is relative to the current read address.
Zero would be the current input value (represented by Next); in reality a zero value is an indicator to
suppress the write operation altogether.

The eight bit dddd dddd value would give a range up to 255 values in the future. We wish to extend this
timescale to at least 2 . This is accomplished by reserving addresses of the form 1111 dddd to indicate
long addresses in which the last four bits are pre-pended onto the 16-bits of the next instruction register
value to form a 20-bit relative address. This long address is referred to as eeee eeee eeee eeee eeee.

Thus, the allowed range of dddd dddd addresses is 0 to 239.

A host (external) control processor writes contents to RAM to initialize code and data prior to operation. This
may also be used to load the next algorithm/data during the execution of the previous.

Random writes from the host (external) control processor fit in with the general architecture by simply
adding RAM rows and addresses to the existing write queue.

19

I/O: Host Setup and Retrieval

Computation results may be read from the RAM by the host (external) control processor. Alternatively, the
SIMD algorithm may issue Output instructions to write full RAM rows to an external device.

The use of a specific OUTPUT instruction complements the architectural design but requires a ready and
waiting control processor to handle this data at a moment’s notice. This may pose an unacceptable burden
to the off-chip interface. A sequential FIFO queue to buffer pending OUTPUT data may be used to mitigate
this issue.

Full consideration must be given to the tradeoff between BLU Complexity (chip real estate), parallelism,
power consumption and speed. In particular, it may be necessary to limit the instruction set due to these
constraints. Therefore, the availability of certain of the more exotic instructions described here should be
considered implementation dependent. The compiler/assembler is expected to make suitable adjustments
to the resulting code.

The BLU is a two-input, 64-bit combinatorial logic processor. All instruction OpCodes complete in one
machine cycle. The operation result is (conditionally) latched into the Accumulator Acc. The accumulator
value is always used as one of the two inputs to the next operation performed by the BLU. An auxiliary
output bit from the BLU is called Toggle; this bit represents a state that can be tested for controlling
conditional operations.

We describe an implementation of 64-bit SIMD processors attached to a 64MB, 1024-bit wide DRAM
interface. There are 16 parallel lanes under the control of one set of instruction decode and sequencing
logic.

Parameters that define the implementation are:

Value Item Description

64 Bits Word size in bits

1024 Row RAM Row Length in bits

64 Ram Total RAM size in MB

19 Addr RAM Row Address Bits

2 = 524,288 Rows Number of RAM rows

16 Lanes Parallel processing units

Binary Logic Unit (BLU)

. . . T B D . . .

Reference Implementation

19

16 VLanes Virtual lanes processed serially

256 Cache Rows stored in fast-read cache

Each BLU lane (virtual or physical) has an internal state defined by

Bits Register Description

64 Acc Accumulator

1 Toggle Auxiliary BLU Status Bit

6 Cond Conditional Execution Nesting Counter

Standard instructions are 16-bits wide, packed 64 per RAM row.
A Standard Instruction may be followed by an addional 16-bit Long Address value. Instructions with
appended Long Addresses may not cross a RAM row boundary. If necessary, adjust boundaries by inserting
a CODE OpCode as the last instruction in the RAM row.

The Instruction Control Unit implements the following shift register

Bits Registers Description

16 64 Instructions in code shift register

Each instruction cycle shifts in the next 16-bit instruction. If the instruction decodes as requiring a long
address the next 16-bit word is used and an extra shift cycle occurs. With each shift, the value of a CODE
OpCode is shifted in to the last place in the shift register. This eliminates the need for any form of instruction
counter or index register and associated logic.

The execution of a CODE OpCode loads the instruction shift register, in parallel, from the contents of the
Next RAM Row.

Thus far the architectural discussion has centered on bitwise operations in a compact, parallel-operation
environment. Frequently a co-processor such as this will be applied to scientific, neural net or graphical
problems that require extended precision arithmetic computations. We now consider the minimum
requirements for these operations and suggest compact, power-efficient extensions to support them.

The IEEE 754 Standard for Binary Floating Point Arithmetic is one of the cleverest, most widely adopted
standards in existence. Its use allows a high degree of performance optimization for all kinds of higher
mathematical functions. In order to achieve these performance benefits, specialized hardware is required.
Specifically, the standard includes special-case bit configurations indicating
1. Signed Zero values
2. Signed Infinite values

Concerning Multiply and Divide

3. Denormalized values
4. NAN values
5. Ordinary signed floating-point values

Handling every combination of these configurations used as input to every supported operation, in a
conformant manner, is quite slow if a software implementation is required. Further, accurate handling of
result rounding is not trivial. The hardware implementation is not compact, but can be made quite fast -
especially when consecutive, pipelined operations can obscure the latency of individual instructions.

Specialized hardware can also be quite beneficial in other cases. For example modern Multiply-Accumulate
(MAC) units implement fused multiply-add which significantly reduces the number of roundings. Thus,
higher precision results are achieved than would even be possible with a (realistic) software implementation.

Programming languages bridge the gap between the designers of a software algorithm and the actual
hardware that will implement it. Traditionally the languages and its compilers will implement data types that
resemble those supported by the physical hardware. This becomes problematic when a variety of different
hardware capabilities are involved. For example, a programmer would like for his algorithm to “just work” -
even though some implementations might include floating-point hardware and some might not. The solution
to problems such as this typically involves the use of libraries of hand-crafted routines that ensure
standardized results for operations no matter what features the underlying hardware might provide.

Unfortunately, this “library solves the problem” approach is insufficient because the programming languages
themselves are poorly defined. Even such critical features as the number of bits in an integer are
“implementation dependent” as far as the language definition is concerned. This leads to the use of
generalized consensus in place of rigor. “Everybody knows” that an int is 32-bit twos complement. Except
in older code. Except in embedded systems. Except on GPUs. Except when ad infinitum.

Legacy programming languages implement poorly conceived, incomplete and frequently inappropriate data
type declarations. Hardware designers make trade-offs relating to speed, power consumption and
complexity that cause a wide variety of different features to be implemented. The combination of language
and hardware incompatibilities means that it is literally not possible for an algorithm designer to express his
actual intentions.

Furthermore, in high-performance applications the algorithm designer may have very specific goals. The
fact that these goals cannot be expressed explicitly limits not only the performance but the ability of
hardware designers to recognize possible improvements.

The hardware designer tries to implement features that will correspond to the expectations of the
programming language and the programmers. Hardware designs typically target these general expectations
(or the performance requirements of very specific benchmarking software for marketing reasons).

This leads to a situation where high-performance algorithm designers are forced to target specific hardware
implementations with manually crafted, assembly-level code. Thus, high-level languages, features and
compilers play essentially no part in the process - except to act as spoilers by leading to naive expectations
on the part of neophyte software, hardware and marketing engineers.

Things like the (otherwise wonderful) IEEE 754 Standard lead to a bloated and wasteful one-size-fits-all
mentality when carried to extremes. Once a successful FPU or MAC design is created, the temptation is to
increase performance simply by putting thousands of them on a chip.

Processor arrays such as these are typically found in GPUs. While they may be able to achieve spectacular
performance for their intended algorithms, small changes can lead to surprises. For example, GPU
performance on single-precision operands is typically eight times better than double-precision. Graceful
scaling is replaced with stepwise penalties. Much effort, complexity, power consumption and risk is
associated with creating hardware elements that are rarely if ever used in the real world.

In the software world, this mentality causes programmers to pick a favorite numerical representation to use
- whether it is warranted or not. Rules-of-thumb take precedence over rational analysis of algorithms,
scaling and precision. And, as we have seen, the style of data type declarations actively prevent the
languages and compilers from providing meaningful assistance.

The present architecture takes a very simplistic approach to providing floating-point operations. We already
implement powerful instructions for the manipulation of binary bit fields. These allow us to import and
export data in rather arbitrary representations. Thus, we need not feel constrained to actually implement
specific hardware standards if we can accomplish our goals more efficiently and maintain interface
compatibility.

Internally all our operations are performed on 64-bit words, but this does not mean that we are constrained
to only 64-bit precision. We implement integer multiply and divide operations on a bit-at-a-time basis using
a single 64-bit hardware adder. This allows us significant advantages

Speed scales inversely with precision
Power consumption scales linearly with precision
Hardware utilization is maximized
Hardware complexity is minimized
Precision scaling as required by the specific algorithm
Arbitrary mantissa and exponent sizes are supported

Most importantly, the choice of precision can be made in each individual instance within the program. The
algorithm designer is given considerable flexibility and is no longer as constrained by arbitrary decisions
made a priori by the hardware design. Speed, resolution and power consumption can be directly matched
to the design requirements.

It is true that more specialized hardware can be expected to perform faster, but the design presented here is
expected to be best-in-class from the standpoints of power consumption and hardware complexity. The
thought process for the designer should be viewed more along the lines of using microcode instructions to
build a result, as opposed to simply accepting results from standardized FPU modules.

It is well understood that more sophisticated techniques (such as base-8 Booth Recoding) can significantly
improve the speed of hardware multiply implementations. Division can also be accelerated with digit
recurrence algorithms which converge linearly or functional iteration (using multiplies) which converge

Binary Arithmetic Unit (BAU)

quadratically. Pipelining and parallelism within the core can also increase throughput in many cases. These
approaches are appropriate in a speed-at-all-cost design. The present architecture takes a more nuanced
path, eschewing raw speed in favor of a compact, low-power, adaptable implementation.

Floating point representations including manipulation of signed values, exponents, exponent offsets,
significands and rounding modes are handled as software features on an as-needed basis. Acceleration is
provided for multiplication and division of non-negative binary integers.

In order to support unsigned integer Multiply and Divide operations, each BLU lane (virtual or physical) has
an extended internal state. The extended state is defined by the following table. A Binary Logic Unit (BLU)
with these extended capabilities is referred to as a Binary Arithmetic Unit (BAU).

Bits Register Description

64 Acc Accumulator

1 Toggle Auxiliary BLU Status Bit

6 Cond Conditional Execution Nesting Counter

1 MulDiv Indicator Bit for Multiply (set) or Division (reset)

64 AccX Multiplier or Divisor

64 AccY Multiplicand or Dividend

The addition of the single-bit MulDiv indicator and two 64-bit registers to the internal state requirements of
each BLU is all that is necesssary to support the following instructions

	zzzz

iiii	
Instruction Description

	0011

0000	
MUL Set Next into AccX, Acc into AccY, set MulDiv and clear Acc

	0011

0001	
DIV

Set Next into AccX, Twos Complement of Acc into AccY and clear
MulDiv and Acc

	0011

0010	
REM Copy remainder into Acc

	0011

0011	
UNUSED Unused OpCode

	0011

01--	
UNUSED 4 Unused OpCode Block

	0011

1jjj	

COMPUTE
	j	

Compute next 2 bits into product or quotient	j	

The technique begins with the use of a MUL or DIV operation to set the operands into the appropriate
registers, clear the accumulator for the upcoming results and set or clear the MulDiv indicator. Then
repeated COMPUTE instructions are used to build the result to the desired precision. Controlled by the
MulDiv indicator, the COMPUTE operations embody the standard shift-and-conditional-add or shift-and-
conditional-subtract concept. In this case, however, the subtract used for the Division-mode operation is
handled by the adder and uses a twos-complement value initialized in the DIV instruction. At the completion
of each bitwise step the partial product or partial quotient is in the Acc. When all required bits have been
computed the final result is therefore in the Acc. In the case of division, the remainder can be accessed with
the REM instruction.

Using a single COMPUTE instruction per bit of result would naturally lead to long consecutive sequences of
COMPUTE OpCodes in the instruction code stream. This matches the conceptual requirements and does
not (significantly) affect the speed, but it does result in much unnecessary data movement as each virtual
lane is loaded, processed and saved, thus having a serious impact on power consumption. This issue is
alleviated by configuring the COMPUTE OpCode to include the three-bit jjj field to control a repetition
counter. The jjj value initializes a bit in a 6-bit OpCode Repetition Counter, thus enabling 2 consecutive
operations on a single virtual lane with a single OpCode.

	j	

