
© 2016 Brian McMillin

A gate-level logic simulation and design tool is described. Interconnections between gates
are described using a compact notation called Logic Description Language (LDL). Gate and
wire delays may be specified with 0.001 nSec (picoSecond) resolution. A graphical map of
every gate and its current state is provided. The mouse can be used to examine input and
output details of every gate. Selected gates can be displayed on oscilloscope-like traces.
These traces may be zoomed, panned and measured for values such as intervals, pulse
widths and periods.

A stimulus generator may be used to provide synthetic inputs from external logic blocks.
Complex conditionals may be used to generate signal values and detect error conditions
and timing violations.

A complete wire and gate list for the design may be generated, and used to create VHDL,
Verilog or RTL inputs for use by other design tools.

The Simulator addresses the three fundamental shortcomings of existing tools:

1. Quick and Accurate Description of design elements,
2. Visual Answers to fundamental questions about the design, and
3. Direct Comparison of alternative designs.

The entire simulator is a single HTML / JavaScript file which may be run on any modern web
browser.

Abstract
Contents
Why Another Design Automation Tool?

Logic Simulator

Abstract

Contents

file:///var/folders/xf/2tc69h1n28z3sbjc6vdh_cq40000gp/T/37.html#Abstract
file:///var/folders/xf/2tc69h1n28z3sbjc6vdh_cq40000gp/T/37.html#Contents
file:///var/folders/xf/2tc69h1n28z3sbjc6vdh_cq40000gp/T/37.html#Why

Logic Simulator Overview
Detailed Feature Descriptions - (TBD)
User Guide ($UserGuide) - (TBD)

Getting Started

Logic Description Language

Comments
Conditional Compilation
Statements

Symbol Table Concepts

Symbol Substitution
Indentation and Iterative Generation
Parallel Assignments

Gate Descriptions

Gate Delays vs. Rise and Fall Times
Power Consumption

Macro Logic

Macro Syntax

Overrides and Redefinition of Gates
Gate Maps - (TBD)
Schematic Synthesis - (TBD)
Signal Traces - (TBD)
Stimulus State Machines - (TBD)
Fault Tolerance

Monte Carlo Delay Simulation
Boundary Scan - (TBD)
Noise Injection - (TBD)

Collaboration

Cloud Storage

file:///var/folders/xf/2tc69h1n28z3sbjc6vdh_cq40000gp/T/37.html#Overview
file:///var/folders/xf/2tc69h1n28z3sbjc6vdh_cq40000gp/T/37.html#FeatureDesc
file:///var/folders/xf/2tc69h1n28z3sbjc6vdh_cq40000gp/T/$UserGuide
file:///var/folders/xf/2tc69h1n28z3sbjc6vdh_cq40000gp/T/37.html#Start
file:///var/folders/xf/2tc69h1n28z3sbjc6vdh_cq40000gp/T/37.html#LDL
file:///var/folders/xf/2tc69h1n28z3sbjc6vdh_cq40000gp/T/37.html#Comments
file:///var/folders/xf/2tc69h1n28z3sbjc6vdh_cq40000gp/T/37.html#ConditionalCompilation
file:///var/folders/xf/2tc69h1n28z3sbjc6vdh_cq40000gp/T/37.html#Statements
file:///var/folders/xf/2tc69h1n28z3sbjc6vdh_cq40000gp/T/37.html#SymbolTableConcepts
file:///var/folders/xf/2tc69h1n28z3sbjc6vdh_cq40000gp/T/37.html#SymbolSubstitution
file:///var/folders/xf/2tc69h1n28z3sbjc6vdh_cq40000gp/T/37.html#Indentation
file:///var/folders/xf/2tc69h1n28z3sbjc6vdh_cq40000gp/T/37.html#Parallel
file:///var/folders/xf/2tc69h1n28z3sbjc6vdh_cq40000gp/T/37.html#GateDesc
file:///var/folders/xf/2tc69h1n28z3sbjc6vdh_cq40000gp/T/37.html#GateDelays
file:///var/folders/xf/2tc69h1n28z3sbjc6vdh_cq40000gp/T/37.html#Power
file:///var/folders/xf/2tc69h1n28z3sbjc6vdh_cq40000gp/T/37.html#MacroLogic
file:///var/folders/xf/2tc69h1n28z3sbjc6vdh_cq40000gp/T/37.html#MacroSyntax
file:///var/folders/xf/2tc69h1n28z3sbjc6vdh_cq40000gp/T/37.html#Overrides
file:///var/folders/xf/2tc69h1n28z3sbjc6vdh_cq40000gp/T/37.html#GateMaps
file:///var/folders/xf/2tc69h1n28z3sbjc6vdh_cq40000gp/T/37.html#Schematic
file:///var/folders/xf/2tc69h1n28z3sbjc6vdh_cq40000gp/T/37.html#Traces
file:///var/folders/xf/2tc69h1n28z3sbjc6vdh_cq40000gp/T/37.html#SSM
file:///var/folders/xf/2tc69h1n28z3sbjc6vdh_cq40000gp/T/37.html#Fault
file:///var/folders/xf/2tc69h1n28z3sbjc6vdh_cq40000gp/T/37.html#MonteCarlo
file:///var/folders/xf/2tc69h1n28z3sbjc6vdh_cq40000gp/T/37.html#BoundaryScan
file:///var/folders/xf/2tc69h1n28z3sbjc6vdh_cq40000gp/T/37.html#NoiseInjection
file:///var/folders/xf/2tc69h1n28z3sbjc6vdh_cq40000gp/T/37.html#Collaboration
file:///var/folders/xf/2tc69h1n28z3sbjc6vdh_cq40000gp/T/37.html#Cloud

Local Files
Project Documentation

Design Guidelines

Design for Testability
Symbol Names
Title and Note
Naming Conventions

Simulator Configuration

The world of Electronic Design Automation is rife with comprehensive, mature, industry
standard products targeted for all phases of electronic, logic and chip design. Large
development companies, maintenance contracts, skilled professionals and training
programs abound. So why did I develop this tool?

“What I tell you three times is true.” - Lewis Carroll, The Hunting of the Snark

I intend to provide an alternative, rapid, technology to describe, demonstrate and test logic
designs. The description language is completely orthogonal to traditional RTL, VHDL,
Verilog or WYSIWIG tools. Emphasis is on documentation, visualization and accuracy.
Calculations can simulate logic blocks at all levels of complexity and time scale to provide
designers and managers with sanity checks and increased confidence in a design. These
“back of the napkin” results can be used as a starting point for more traditional design tools,
and to provide independent validation tests.

I expect that a design can be described as:

Descriptive, literate design narrative
Stimulus and Response via the Stimulus State Machine feature
Gate-level logic, and
RTL, VHDL, Verilog, etc. using other EDA tools.

The use of multiple, completely independent methodologies to describe a target project will
improve the quality of the design and help prevent “shared misunderstanding” errors. When
I “tell you three times”, I try to use different words in different languages. Again, per Lewis

Why Another Design Automation Tool?

file:///var/folders/xf/2tc69h1n28z3sbjc6vdh_cq40000gp/T/37.html#LocalFiles
file:///var/folders/xf/2tc69h1n28z3sbjc6vdh_cq40000gp/T/37.html#ProjectDocs
file:///var/folders/xf/2tc69h1n28z3sbjc6vdh_cq40000gp/T/37.html#DesignGuidelines
file:///var/folders/xf/2tc69h1n28z3sbjc6vdh_cq40000gp/T/37.html#DesignForTest
file:///var/folders/xf/2tc69h1n28z3sbjc6vdh_cq40000gp/T/37.html#SymbolNames
file:///var/folders/xf/2tc69h1n28z3sbjc6vdh_cq40000gp/T/37.html#TitleAndNote
file:///var/folders/xf/2tc69h1n28z3sbjc6vdh_cq40000gp/T/37.html#NamingConventions
file:///var/folders/xf/2tc69h1n28z3sbjc6vdh_cq40000gp/T/37.html#Pragma

Carroll: “I said it in Hebrew - I said it in Dutch - I said it in German and Greek”. This helps
ensure that we can discover the difference between a snark and a boojum as early as
possible.

“Won’t it take too long or cost too much to do parallel designs?” Let us consider the
current crop of EDA tools in more detail.

Feature …

Rife with Tools Incompatible

Comprehensive Bloated

Mature Legacy Architecture

Industry Standard Designed by Committee

All Phases of Design Feature Accretion

Large Development Companies Expensive

Maintenance Contracts Buggy

Skilled Professionals Vested Interests

Training Programs Steep Learning Curve

Now, after that (admittedly, rather snide) recharacterization of my initial paragraph (and the
industry as a whole), let us examine my current offering to see if I am proposing time and
money well spent.

We provide a number of features to assist in the block-level and gate-level design of
complex logic.

Compact notation to replace VHDL, Verilog and RTL descriptions in most cases

Explicit names for all signals
Complete wire-lists showing all gate connections
Full reduction to NAND logic
Precision timing and delays at up to picoSecond accuracy

Logic Simulator Overview

Direct indication of Fan-Out for every signal

Gate-level, picoSecond accurate Logic Simulation

Variable-speed Run mode, including single-step
Dynamic real-time displays
Gate delays based on wire length and fan-out loading

Display map of every gate and its current state

Mouse selection showing input states and fan-out
Dynamic colors indicate recent state changes

Oscilloscope-like display traces showing history of selected gates

Traces allow wild-card grouping to show bus status
Mouse selection to analyze exact state at a given time
Precision time interval measurement, and pulse width and period display
Dynamic zoom and pan through trace history

Unique syntax describing Stimulus State Machines which are used for

No need for external C or Python simulation scripts
Stimulus generation
Simulation of external logic blocks
User interface buttons and lights
Assertions and Error Detection
Signal Trace Annotation
Event Logging

Support for direct comparison of alternative designs

Logging of event conditions

Cloud-based shared-source structure for collaborative design

(TBD)

Detailed Feature Descriptions

Getting Started

(TBD)

The Logic Description Language(LDL) is an ASCII text-based, line-oriented language.

Comments
LDL is considered literate, in that descriptive comments are the predominant, default mode.
All lines that have text which begins in column one are considered comments and are
ignored by the processor. Additional end-of-line comments begin with // or !!, and traditional
C-like multi-line comments bracketed by /* and */ are also supported.

The comment processing step is completely unaware of literals or quoted strings. If you
insist on trying to put things that look at comment markers in literals, write them like this: /\/,
!\!, /* and *\/ using the \ before the second character.

Conditional Compilation
Conditional Compilation is used to allow sections of source code to be selectively included
or removed from the simulation. Special syntax for multi-line comments is used. /*$ name
… */ indicates that an option name will be tested. This creates an option check box called
name on the user interface which, if checked, will cause the statements up to the end of the
comment to be processed instead of being ignored. There is no else option. Therefore, we
also support the inverse form: /*$! name … */ .

conditional form description

/* … */ Multi-line Comment. Do not process … statements

/*$ name … */ Process statements … if option check box name is checked

/*$! name … */ Process statements … if option check box name is not checked

/*$ name:true */ Initialize option check box name to checked

/*$ name:false */ Initialize option check box name to not-checked

User Guide

Logic Description Language

Multi-line comments may not be nested.

This feature approximates the conditional compilation provided to C-like languages by the
#define, #ifdef and #endif preprocessor directives.

Statements
Language statements begin after column one and are indentation-dependent. That is, the
number of leading spaces is used to establish statement groups. This is in lieu of the
bracketing symbols such as { and }, or begin and end commonly used in other languages.

Each line of source may contain at most one statement. There is no statement delimiter.
Parameters within a statement are separated by the ; (semi-colon). Sub-parameters are
separated by the , (comma).

There are several types of statements:

statement type example

Option Block Begin 	/*	$name	

Option Block End 	*/	

Symbol Assignment 	:	symbol=value	

Sequential Assignment 	:	symbol=val1,val2,val3	

Parallel Assignment 	:	symbol1=valA,valB,valC;	symbol2=valX,valY,valZ	

Gate Description 	name;	gate=NOT;	a=inputSignal	

Gate Macro Start 	[[name;	param1;	param2	

Gate Macro End]]	

Gate Map Format 	@	numberOfColumns,	columnWidth,	gateSize	

Gate Map Column 	@	col	

Gate Map Row 	@	

Stimulus Machine Begin 	{{	

Stimulus Machine End 	}}	

Stimulus Machine State 	**	name	

Stimulus Machine Condition 	??	condition	

Stimulus Machine Operation 	>>	operation:parameter	

Stimulus Machine Assignment 	>>	name:=value	

The use of explicit markers for statement type at the beginning of most lines improves
clarity and eliminates most misunderstandings during casual source review. In general,
block-style statement groups may not be nested, further reducing errors.

Programming languages commonly use the concept of “variables” to allow convenient,
meaningful names to be used as placeholders for actual “values” to be used by the
program. The correspondence between variable “names” and “values” are contained within
a structure known as the Symbol Table. Using a Symbol Table allows any particular variable
“name” to be assigned different “values” as needed at different points in the program.

The symbol replacement mechanism performs a similar function to the macro pre-processor
used in C-like languages.

In the Logic Simulator, the Symbol Table is used only during the process of converting an
input source program into the gates, Gate Maps, wire connection lists and Stimulus State
Machine structures used for the actual simulation. This “build a symbol” technique is used
as a compact notation to describe the creation of the gate names and connections used in
the actual simulation.

LDL uses a hierarchial symbol table while processing the source input program.
Processing of the source generates

Symbol Table Concepts

1. A Graphical Gate Map,
2. A Gate Connection List, and
3. A Stimulus State Machine list.

Lexicographic levels are explicitly indicated by indentation of the source.
The specific lex level is specified by the number of steps of indentation, not the actual
distance (number of leading spaces). Thus, any conveninent indentation style can be used
for readability - so long as each lex level lines up consistently. The following (contrived)
examples generate identical results.

:	foo=bar,	baz
		:	count=47,	49
				signal	foo	count;	gate=NAND;	a=foo;	b=signal	count
signal	foo	count;	gate=NAND;	a=foo;	b=signal	count

:	foo=bar,	baz
						:	count=47,	49
												signal	foo	count;	gate=NAND;	a=foo;	b=signal	count
signal	foo	count;	gate=NAND;	a=foo;	b=signal	count

Caveat: One must be aware of all of the defined symbols in the current lexical group in
order to prevent “accidental” use of a defined symbol when a literal is intended. In
collaborative designs (or simply to improve clarity) a Hungarian Notation convention may be
adopted. For example, all defined symbols could begin with & (ampersand), and all iterative
symbols could begin with && (double ampersand). This would be a design convention and
not enforced by the language. In general, such contrivances should not be necessary.

Symbol Substitution

Consider the two examples above. Each has four source lines, both generate five gates and
are equivalent to the following:

signalbar47;	gate=NAND;	a=bar;	b=signal47
signalbar48;	gate=NAND;	a=bar;	b=signal48
signalbaz47;	gate=NAND;	a=baz;	b=signal47
signalbaz48;	gate=NAND;	a=baz;	b=signal48
signalbazcount;	gate=NAND;	a=baz;	b=signalcount

Indentation and Iterative Generation
The first statement is a symbol table assignment (begins with a : colon) at the outermost lex
level. The symbol foo will take on two consecutive values bar and baz. This is how we
create loops: a sequential-value assignment followed by an indented block of statements
that are repeated once for each value.

The second statement is a similar multi-value assignment, creating the symbol count at the
next lex level. This nested loop structure steps through two values of count (47 and 49) for
each of the values of foo.

The third statement is a description of a new gate. The name of the gate (and the name of
its output signal) is given by the text string before the first ; (semi-colon). The “words” foo
and count are substituted to compose the actual Gate Description statement.

The fourth statement is indented to the same level as the definition of foo and therefore is
outside of either of the loops. It also describes a new gate. The symbol foo retains its most
recent value (baz), and the “word” count is not defined in this outer lex level and is therefore
treated as a literal.

One of the most important features of any logic design is the ability to create groups of
similar logic elements such as busses or registers that all have unique but descriptive
names. For example, reg0, reg1, … regF. The need to concatenate elements to create
signal names is so common that it is a primary feature of LDL.

When processing a statement, every “word” (printable characters separated by spaces) may
be either a literal part of a name or a reference to a previously-defined symbol. For each
“word” the symbol table is examined, beginning with the current lex level and working
toward the outer level. If a defined symbol is found whose name matches the word, the
value is substituted. If the “word” is not found in the symbol table, it is treated as a literal.

After all symbol substitution is completed, spaces are removed from the statement. This
effectively concatenates the static (literal) and the dynamic parts of the signal name.

Symbolic name generation is so important and so common that it is critical that the syntax
used should be clear, compact and not error-prone. Traditional languages usually feature
1960’s style techniques such as quoted-strings for literals and explicit concatenation

operators such as + (plus). This is labor-intensive, error-prone, and tends to obscure the
designer’s intent. Making “word” lookup and concatenation the default behavior enhances
to clarity and accuracy of the design.

Parallel Assignment
Another common design requirement is to be able to create gates connected to adjacent
elements (of a register or bus, for example). This quick description generates the first level of
a parity generator for an eight-bit register.

:	inA=0,2,4,6;	inB=1,3,5,7
				parity	inA	inB;	gate=XOR;	a=reg	inA;	b=reg	inB

This uses the same symbol table value assignment, substitution and looping described
above. The difference is that successive values are assigned to both inA and inB for each
iteration. The resulting four gate descriptions woud be:

parity01;	gate=XOR;	a=reg0;	b=reg1
parity23;	gate=XOR;	a=reg2;	b=reg3
parity45;	gate=XOR;	a=reg4;	b=reg5
parity67;	gate=XOR;	a=reg6;	b=reg7

The number of elements in the list assigned to each of the symbols should be the same.
Parallel assingments are not restricted on number of symbols or number of iterative
elements per symbol.

To complete the example, a full eight-bit parity generator could be described as follows:

:	inA=0,2,4,6;	inB=1,3,5,7
				parity	inA	inB;	gate=XOR;	a=reg	inA;	b=reg	inB
:	inA=01,45;	inB=23,67
				parity	inA	inB;	gate=XOR;	a=reg	inA;	b=reg	inB
parity01234567;	gate=XOR;	a=parity0123;	b=parity4567

The complete generator tree uses seven XOR gates in three levels (of 4, 2 and 1) and
computes the result in O(log n) where n is the number of bits in the register.

An alternative (naive) design also uses seven XOR gates:

2

parity	1;	gate=XOR;	a=reg	0;	b=reg	1
:	inA=1,2,3,4,5,6;	inB=2,3,4,5,6,7
				parity	inB;	gate=XOR;	a=parity	inA;	b=reg	inB

This is a (very slow) serial chain of XOR gates which computes the result in O(n) where n is
the number of bits in the register.

The Logic Description Language is used to create a gate-by-gate description of the logic
and interconnections of the design. Every gate is named by its single output signal. The
output signal can be thought of as the “value” of the gate at any time.

Output signals from a gate are used as inputs to other gates. This creates a Fan-Out
situation which allows one driver and multiple receivers.

Every signal is sourced by exactly one gate and drives one or more inputs. This explicitly
disallows tri-state outputs or wired-OR connections as these are considered poor practice
for modern designs.

We are most concerned with NAND gates for conventional logic designs, although we
natively allow any of the following:

Inputs: 2-9 2-9 2 1

AND OR XOR BUF

NAND NOR XNOR NOT

Inverters (NOT) and buffers (BUF) have one input named a.
XOR and XNOR have exactly two inputs named a and b.
AND, NAND and OR types have two to nine inputs, named a b c d e f g h i. All input names
must be consecutive. Input names must be lower-case letters.

Each gate description is a line of source code such as this:

Gate Descriptions

gateName;	gate=NAND;	a=inputA;	b=inputB

gateName#;	gate=NOT;	a=gateName

Gate Delays vs. Rise and Fall Times
This Simulator is intended for the modeling of high-speed, chip level designs. Traditional
concerns for a signal’s rise and fall times are based on the driver pumping charge into a bulk
capacitance and the duration of the period of ambiguity at the connected input devices. We
eschew designs involving tri-state logic, open drain (open-collector) wired-OR signals and
bipolar devices. Thus, any differences between rise- and fall-times become irrelevant.

For high-speed designs using CMOS devices we are more concerned with the signal delays
due to transmission-line effects and distributed impedance. Instead of attempting analog
modeling, this simulator introduces scaled delays between the outputs and inputs of
otherwise ideal logic gates. Thus, the waveforms displays for a given gate are viewed from
the standpoint of an ideal probe at the output of an ideal gate.

A signal transition seen at the output of a driving gate will not affect the state of a driven
gate for some interval into the future. We allow several elements to influence these delays in
order to adapt to real-world situations.

Delay Element Description

Inherent Gate Delay Switching time driving standard FO4 load

Additional Load Greater Fan Out slows transitions

Manufacturing Variation Randomized Delay Variation

Wire Length Unique additional delay per input

Each of these elements may be adjusted as part of the design specification.

Power Consumption
In general, the power consumption of modern logic circuits can be divided into static and
dynamic components. For CMOS circuitry this can be roughly analyzed given the
parameters in the following table. Note the distinction between CMOS FET Gates and Logic
Gates.

Parameter Static Dynamic

FET Gate Area Y Y

Number of FET Gates Y Y

Number of FET Gate State Changes Y

Operating Voltage Y

Signal Voltage Range Y

In order to assist with these calculations for logic gate-level designs, the simulator provides
several useful statistics.

Parameter Description

Number of Logic Gates
Total Logic Gates (output signals) synthesized in the
design

Number of FET Gates
Total Logic Gate Inputs (times 2) synthesized in the
design

Number of Transitions
FET Gates that change state during a selected time
interval

Running Average
Transitions

Average Dynamic Power Consumption

Running Peak Transitions Peak Dynamic Power Consumption

One primary benefit of these simulation results is the ability to directly compare and
optimize competing designs. The design that meets the goal with fewest gates and fewest,
lowest-speed clock transitions should be preferred.

The Running Average and Running Peak values assist in addressing noise considerations.
Strong Peak values are indicative of a design that is likely to couple noise onto the power
rails, as well as contributing to radiated emissions.

It is up to the designer to know the details of process and geometry in order to properly
scale these guides into real-world estimates.

Macros provide a mechanism to name and define common logic blocks. Several library
macros are provided for commonly used elements.

Internal support for AND OR XOR NOR and XNOR are provided for quick-and-dirty
simulations. Higher fidelity simulation and accurate wiring lists would normally expect these
functions to be implemented in pure NAND logic. Library macros are provided for this
purpose.

Note that the library macros require an explicit number of inputs. The macro parameter
substitution uses A= and B= in Upper Case. Native gates use lower case input names and
automagically handle up to nine inputs.

The designer is expected to make a decision as to whether the full fidelity implementation is
needed for the particular situation. Additional macros can be created to build blocks for
larger numbers of inputs for simple gate functions.

Macros: Full fidelity reduction to NAND-only logic

Native Gates: Easy preliminary design and faster simulation

The library macros that provide reduction to NAND logic will create multiple-input NAND
gates. This is the expected behavior for CMOS logic design targeted for FPGA or ASIC
hardware.

By convention, gates that are created within a macro are given names ending with –a, –b,
etc. In some cases, more descriptive suffixes are used. The primary output(s) of the logic
block will be given the name without any suffix. Flip-flops with an inverted output will
provide a gate with the # suffix.

Macro Syntax
Here is a simple macro which defines an AND gate logic block.

[[AND;	id;	A;	B
				id				;	gate=NOT;		a=id	--x
				id	--x;	gate=NAND;	a=A;					b=B
]]

Macro Logic

1. Macros are bracketed using the double-bracket notation: [[and]].
2. The macro name (like all symbols) is case sensitive. It appears after the [[.
3. Within a macro, statements define new gates and their types, inputs, delays, etc.
4. Macro parameters (by convention) consist of capital letters and are substituted using

the same symbol lookup and replacement and concatenation technique described
above.

This macro block may be invoked as follows:

signal;	gate=AND;	A=inputA;	B=inputB

which will result in the creation of the corresponding NAND gate and inverter:

signal;	gate=NOT;	a=signal--x
signal--x;	gate=NAND;	a=inputA;	b=inputB

Note that the output of the logic block is called signal as one would expect, and that the
internal signals generated by the macro have names with suffixes like –x.

(TBD)

Normally gates are defined on a single line such as this:

gateName;	gate=NAND;	a=inputA;	b=inputB

The first reference to a signal name (such as gateName, inputA and inputB) creates a
placeholder internally. Attributes such as the type of gate, inputs and associated delays can
be included at the first definition or can be added later. The following are equivalent:

Overrides and Redefinition of Gates

gateName;	gate=NAND;	a=inputA;	b=inputB

gateName;	gate=NAND
gateName;	b=inputB
gateName;	a=inputA

Any gate attribute can be overridden by simply assigning a new value.

gateName;	gate=NAND;	a=inputA;	b=inputB
gateName;	a=inputXX

Reassignments are important because many circuits consist of groups of elements such as
registers or busses that may have common or symmetrically defined elements that are
easily described, in bulk, using the interative and symbol-substitution features.

Then particular signals may be overridden to provide unique features for certain elements.

Care must be exercised when using macros in redefinitions since the macro must specify
ALL inputs in each case - unlike the native gate example above. Null values will never
override a previous definition and can be used to satisfy the “all inputs” rule when using a
macro redefinition. Using the AND macro described above these two examples

signal;	gate=AND;	A=inputA;	B=inputB

and

signal;	gate=AND;	A=inputA;	B=
signal;	gate=AND;	A=;	B=inputB

yield identical results: an inverter and a single two-input NAND gate with properly defined
inputs.

(TBD)

Gate Maps

(TBD)

(TBD)

(TBD)

(TBD)

Support is provided for storing project designs in the Cloud, and for open-source sharing of
designs and implementations.

Every project has a name which is case-sensitive, and may contain letters, digits, -, _ and >.
The source file for any project may be saved to and loaded from the Cloud. Every version
saved to the cloud is available. Old versions are permanently preserved and are accessible.

A special syntax is used for accessing project versions as shown here.

example syntax description

myProj the most recent version of myProj

myProj(1) The first saved version of myProj

myProj(12) The twelfth saved version of myProj

myProj(-1) The previously saved version of myProj

myProj(-3) The third previously saved version of myProj

Schematic Synthesis

Signal Traces

Stimulus State Machines

Collaboration

myProj(-4h) The version that was current four hours ago

myProj(-2d) The version that was current two days ago

myProj(2017-01-20) The last version that was created on or before the given date

Whenever a given project is saved, it becomes the current (most recent) version. The actual
version number is displayed as part of the name. In addition, the URL for the Simulator is
updated with a hash value for the current project version. This allows sharing specific
versions among colleagues by simply copying or eMailing the URL.

Cloud Storage

The collaborative features are intended for open-source sharing among multiple
workstations or between colleagues. The choice of project names is completely up to the
user.

Please be considerate and choose names that are not being used by other developers. Try
loading a project by name to see if the name is in use. Your files will not be in danger of
being lost since they cannot be overwritten or deleted from the Cloud, and the explicit
version numbers will be correct. Multiple projects with the same name will, however, get
interspersed version numbers. This will limit the utility of the (-n) “previous version” feature,
and the “Current Version” might be the “other” project instead of yours.

There is no directory of projects. Do not forget the name that you used. This “feature”
allows a certain amount of security-by-obscurity. Give experimental or proprietary designs
names that are unlikely to be used or guessed by others.

As a convenience, the Simulator uses a local cookie to preserve the most recently used
Project Names on your local machine.

It is expected that there will be team development projects, projects with multiple sub-
designs, designs with experimental or temporary files and projects that need to fork and
merge. To support these use cases, the project leader should choose a naming convention
that will be consistently used by the team members. This can involve creative use of the
allowed special characters and the names of team members or groups.

The permanent nature of the Cloud storage and naming of the different versions mean that
the project URLs can safely be used as part of the documentation and archives of a project.
Current development status may be shared among team members by providing a directory

of URLs with appropriate annotations. How this is implemented is the responsibility of the
team leader. I welcome comments and discussion of Best Practices.

Local Files

It is anticipated that the limited source file editing capability provided within the Simulator
will be augmented by other tools. Security restrictions prevent browser-based applications
such as the Simulator from saving files to the user’s computer. This is a major reason for
including the Cloud-based Project mechanism.

Saving a source file that has been edited within the Simulator to the local computer is best
accomplished using the clipboard Cut and Paste.

The clipboard can also be used to paste source code into the Simulator.

Loading a source file from the local computer can be accomplished using the Choose Local
File button. This will use the browser’s file selection mechanism to safely read a particular
local file.

The Simulator is also a drop target, so the local file system’s drag-and-drop feature can be
used to drop a source file into the Simulator.

Project Documentation

The Cloud preserves and makes accessible every version of a project file. This provides
several unique advantages:

Audit trail for design and development history,
Support for permanent documentation,
Support for regression testing during project evolution,
Support for Training and Presentation materials
Support for distributed partitioning of Long Duration or Large System Simulations

Robust system design ensures that all design parameters are kept well within the prescribed
operating envelope, and that illegal or fault conditions are handled appropriately within the
system.

Fault Tolerance

Modular design using standard, well-characterized elements helps to ensure the behavior of
a system on a local scale. Interactions between standard modules and the operation of
large-scale features are much harder to characterize. Difficulties include not only the larger
number of components but the exponential growth in number of edge and corner conditions
that are potential sources of failure.

The Simulator includes a number of features that assist the desinger in building confidence
in his design.

Monte Carlo Delay Simulation

Each time a project file is RELOADed the entire gate architecture and State machine
environment is recreated based on the selected Project Options. The rebuilding of the gate
architecture includes rebuilding the delays of individual signals between gates.

The input and output delay descriptions may be static integer delays in picoSeconds, but
they may also include a random variability parameter. During each RELOAD, the variablity
element is evaluated and the delay used during this program run will be adjusted
accordingly. This allows for introducing a simulation of manufacturing drive and threshold
variations, as well as a lumped variation that could involve impedance, temperature,
humidity and power supply differences.

Statements in the Simulation State Machines can be used to capture violations of signal
timing margins or outright erroneous results. Careful selection of events and totals to log will
help to reduce the flood of simulation data to a small set that can be used for design
validation.

The Monte Carlo feature allows a particular design to be run an arbitrarily large number of
times, each starting with a RELOAD to achieve different, randomly selected, variations in
each gate.

In addition to this timing randomization implemented as a feature of the RELOAD operation
the Stimulus State Machines can be used to introduce deterministic or random behavior as
described in the following sections. The Monte Carlo feature allows selected data to be
collected over multiple runs.

Boundary Scan

(TBD)

Noise Injection

(TBD)

Several logic design guidelines and conventions are supported or required by the Logic
Simulator.

Design for Testability
Design for Test rules require that the entire design be able to be initialized to a known state.
This is required for any traditional test method (such as signature analysis) but is especially
important for the logic simulator. Every gate must be capable of achieving a known, stable
state prior to a meaningful simulation run.

In particular, this means that any feedback loop (such as a gate-delay oscillator or flip-flop)
must be able to be held in a known initial state. The simulator uses the signal POreset# as
an active-low power-on reset signal. The macros that support flip-flops incorporate multi-
input NAND gates to clear the flip-flop during the power-on interval.

The special stable: conditional expression in the Stimulus State Machine can be used to
detect when the entire design has reached a steady-state condition. Usually, this would be
used to release the POreset# signal to begin the simulation. It may also be used in the
simulation of combinatorial logic segments to determine and display propagation delays. In
addition, discovering that a design will not stabilize in a reasonable amount of time at
power-on is usually an indication that a feedback path does not have a proper reset
element.

Symbol Names
The Logic Design Language enforces very few rules with regard to the designer’s choice of
gate names. The following table lists the names that are explicitly reserved for Simulator
internal use.

Design Guidelines

name description

0 Logic zero

1 Logic one

POreset# Power-on reset - active low

gate Type of gate or Macro name

group Group ID for Schematic generator

note Descriptive text for gate

title Descriptive Title for Simulation Project

a b c d e f g h i Gate input signal names

[a] [b] [c] [d] [e] [f] [g] [h] [i] Gate input delays

[o] Gate output delay

Any printing character may be used in a symbol name. The following table lists characters
that have special meaning at certain points in the processing. It is generally wise to avoid
the use of reserved characters in symbol names.

character usage

” “ Double Quotes prevent space compaction in text

[] Square brackets are used for setting signal delay times

= Equal sign is used for symbolic name assignment

; Parameter Delimiter

, Sub-parameter delimiter

@ Gate map Description

/ / Block Comment Delimiters

// !! End-of-line Comment Delimiters

[[]] bracket Gate Definition Macros

Bracket Stimulus State Machine descriptions

== != <> < > <= >= Relational Operators

? Wildcard match to 0 1 2 3 4 5 6 7 8 9 A B C D E F

Title and Note
Descriptive text may be specified by making assignments of the following forms:

:	title	=	"Project	Title"
:	note	=	"This	is	my	Shift	Register"

The text is actually HTML, so you can embed tags as desired:

:	note	=	"This	is	my	Shift	Register"

Be sure to properly close your tags to avoid surprising results.

As a convenience, we provide some useful meta-tags for quickly creating colored
annotations. These meta-tags are named with one or two capital letters and are magically
self-closing as needed.

meta-tag pair meaning meta-tag pair meaning

<R> … </R> Red text <RB> … </RB> Red Background

<G> … </G> Green text <GB> … </GB> Green Background

 … Blue text <BB> … </BB> Blue Background

<C> … </C> Cyan text <CB> … </CB> Cyan Background

<M> … </M> Magenta text <MB> … </MB> Magenta Background

<Y> … </Y> Yellow text <YB> … </YB> Yellow Background

<O> … </O> Orange text <OB> … </OB> Orange Background

<W> … </W> White text <WB> … </WB> White Background

<K> … </K> Black text <KB> … </KB> Black Background

Naming Conventions

1. It is recommended that the following characters be used in creating symbol names.

character description

A B C D E F G H I J K L M N O P Q R S T U V W X
Y Z

Upper Case Alphabetic

a b c d e f g h i j k l m n o p q r s t u v w x y z Lower Case Alphabetic

0 1 2 3 4 5 6 7 8 9 Digits

~ ` ' ! # $ % ^ & * - + . _
Recommended Special
Characters

2. To improve clarity in the case of symbol substitution, especially in nested loop contexts,
the use of the & and && convention may be used.

:	&subst=XYZ
				:	&&inner=AA,	BB,	CC
								reg	&subst	&&inner;	gate=NAND;				

In general, however, it is believed that (within reason) removing unnecessary boilerplate
(“noise”) characters improves the overall clarity of the design and documentation. Context
should indicate which “words” are literal and which will be “filled in” to compose a signal
name.

As usual in literate programming the documentation is expected to be predominant.
Compact “programming language” features should be clarified by quality explanations.

3. Active-low signal names should end with # (pound sign) or / (forward slash). I prefer the
convention that a signal sig passing through an inverter becomes sig/, and that signals that
are usually complementary (such as the Q and Q-bar outputs of a flip-flop) use the sig and
sig# notation. This is how the included macro definitions are structured.

Obviously the real-world and simulated situation involving propagation delays means that
the (illgal) sig = sig/ or sig = sig# states will occur, at least momentarily.

Careful use of sig/ for inverter outputs will cause the automatic consolidation of devices that
explicitly invert the same signal. This will reduce the number of generated inverters. Caution
should be exercised in the case of inverter chains: signal name elements should be spaced
out in the source

sig	/		;	gate=INV;	a=sig
sig	/	/;	gate=INV;	a=sig	/

for clarity and to prevent accidental // comments.

4. Signal names should be more than one character long and preferentially begin with a
lower-case letter.

5. Use of camelCase is the preferred method of composing names, although the use of _
(underscore) and - (dash) may also be appropriate. Choose a style, document it, and then
be consistent.

The operation of the Simulator may be configured from within the source file. This allows for
repeatable setup for different tests, improves the clarity of collaboarative efforts and can
ensure consistent documentation.

Simulator configuration statements take the form of

$pragma:	option;	option...

option description

run Automatically start running upon load

run- Do not Automatically start running upon load

sections- Hide all the Sections of the Simulator Display

map+ Display the Gate Map

map- Hide the Gate Map

Simulator Configuration

trace+ Show the Trace Display

trace- Hide the Trace Display

source+ Show the Source Display

source- Hide the Source Display

schematic+ Show the Schematic Display

schematic- Hide the Schematic Display

list+ Show the Gate Wire List

list- Hide the Gate Wire List

log+ Show the Log

log- Hide the Log

log: size Set the length of the Log

log: find: text See the text to find and highlight in the log

log: filter: text See the text to use to select records in the log

traces: name, name… Set all traces for the Trace Display

trace: name, name… Add new trace name traces to the Trace Display

power+ Show the Trace Display cursor in Power Mode

power- Show the Trace Display cursor in Time Interval Mode

time- Show the Trace Display cursor in Power Mode

time+ Show the Trace Display cursor in Time Interval Mode

editable+ Show the Source in Editable Mode

editable- Show the Source in Syntax-Highlight Mode

omit+ Show the Omitted Source Highlighting

omit- Hide the Omitted Source Highlighting

macro+ Show Source Highlighting for Macros

macro- Hide Source Highlighting for Macros

machine+ Show Source Highlighting for Stimulus Machines

machine- Hide Source Highlighting for Stimulus Machines

search: text Set up the Search field for Gate Wire List

find: text Set up the Find field for Source Syntax Highlighting

signals: name, name… Select the components for the Schematic Display

montecarlo: count Set the number of runs for Monte Carlo simulation

debug+ Enable internal debug mode

debug- Disable internal debug mode

debug: optionlist Set internal debug option list

debug: option+ Add new internal debug option to list

debug: option- Remove internal debug option from list

