
	

Slán-Chain™:		
Blockchain,	Cryptocurrency,	Storage	and	Contract	Pla;orm	

Design	Notes	and	Background	

(the	tl;dr	version)	

Brian	McMillin	

Slán-Chain™ Architecture DRAFT Page � of �1 52 (c) 2018 Brian McMillin

	

Table	of	Contents	

Preface	 4

Difficult Problems for Cryptographic Smart Contracts	 5

On Distributed Consensus for Very High Transaction Volumes	 6

On Voting System Requirements	 7

Fees for Perpetual Storage Viewed as an Annuity	 8

Concerning Access to the Distributed Blockchain Storage	 9

Concerning the Physical Storage of the Blockchain	 10

Concerning the Scalability of the Blockchain	 11

Concerning Turing Completeness in Blockchain VMs	 12

What is a Blockchain Miner?	 13

Blockchain Incentives	 14

Blockchain Requirements	 15

On Replication of Extremely Large Datasets	 16

Storing and Sharing a Blockchain	 17

How can we Improve the Bitcoin Blockchain?	 18

How can we Improve the Ethereum Blockchain?	 19

How can we Pay Bulk Storage and Bandwidth Providers?	 20

Smart Contracts and the Blockchain Judiciary	 21

Concerning Persistent Oracles, Events, Triggers and Timers	 22

Think the Unix Way	 23

Concerning Interest-Bearing Cryptocurrency	 24

Blockchain Comparisons	 25

Concerning Slán-Chain™ Escrow	 26

Slán-Chain™: Forward and Backward Linked Blocks	 27

Storage Segment Replication	 28

How Does the Slán-Chain™ Get Started?	 29

Concerning Slán-Chain™ Failure Modes	 30

Concerning Transactions	 31

UTXOs or Accounts? Neither.	 32

Slán-Chain™ Operating Parameters	 33

Storage and Network Operating Parameters	 34

Searches, Single Instance Storage and Data Compression	 35

Slán-Chain™ Architecture DRAFT Page � of �2 52 (c) 2018 Brian McMillin

	
“Colored Coins” or Create-Your-Own Token	 36

The Meaning of Currency	 37

Slán-Chain™ Bonded Auctions	 39

Using Slán-Chain™ Escrow for Bid-Ask Settlements	 40

Off-Chain Exchanges: Dangerous But Necessary	 41

Transaction Frequency on the Slán-Chain™	 42

Slán-Chain™ Escrow Mechanism	 43

Slán-Chain™ Value-Added Services	 44

Creation of Colored Coins	 45

Slán-Chain™ Transaction Types	 46

Slán-Chain™ Escrow Payments	 47

Concerning Stalled Block Production	 48

Blockchain Construction	 49

Data-Store Construction	 50

Statistical Sharding	 51

Slán-Coin™ Exchange Rules	 52

Slán-Chain™ Architecture DRAFT Page � of �3 52 (c) 2018 Brian McMillin

	

Preface	

This	document	is	a	set	of	notes	and	analyses	of	a	possible	Blockchain	Architecture	that	addresses	many	
of	 the	 shortcomings	 of	 the	 present	 cryptocurrency	 and	 blockchain	 implementa@ons.	 In	 addi@on,	
proposals	 are	 made	 to	 offer	 valuable	 services	 at	 negligible	 cost	 in	 a	 form	 that	 can	 scale	 into	 the	
foreseeable	future.	

For	 discussion	 purposes,	 the	 terms	 Slán-Chain™	 and	 Slán-Coin™	 are	 used	 in	 lieu	 of	 a	 professionally	
researched	and	registered	interna@onal	trademark.	 	 I	think	that	Gaelic	is	both	sufficiently	well	known	
and	obscure	to	afford	a	suitably	unique	word.		Slán	means	Strong.	

Comments	and	well-reasoned	cri@cisms	are	welcome.	

And	it’s	this	type	of	integrity,	this	kind	of	care	not	to	fool	yourself,	that	is	missing	to	a	
large	extent	in	much	of	the	research	in	cargo	cult	science.	

	 	 	 	 —	Richard	Feynman	

It	is	extremely	difficult	to	work	through	an	endeavor	of	this	magnitude	without	risking	fooling	yourself.	
And,	in	all	cases,	nature	will	prevail	over	delusions.	

Then	the	Gods	of	the	Market	tumbled,	and	their	smooth-tongued	wizards	withdrew	
And	the	hearts	of	the	meanest	were	humbled	and	began	to	believe	it	was	true	
That	All	is	not	Gold	that	GliJers,	and	Two	and	Two	make	Four	
And	the	Gods	of	the	Copybook	Headings	limped	up	to	explain	it	once	more.	

	 	 	 	 —	Rudyard	Kipling 

Slán-Chain™ Architecture DRAFT Page � of �4 52 (c) 2018 Brian McMillin

https://en.wikipedia.org/wiki/All_that_glitters_is_not_gold

	

Difficult	Problems	for	Cryptographic	Smart	Contracts	

Certain	problems	are	difficult	 to	 solve	economically	using	 the	current	 implementa@ons	of	Blockchain	
technology	 and	 cryptographic	 smart	 contracts.	 These	 difficult	 problems	 can	 be	 divided	 into	 several	
classes	based	on	the	type	of	difficulty	involved.	

1.	 Contracts	that	would	involve	too	many	small	transac@ons	to	be	economically	viable.	

2.	 Contracts	that	would	involve	computa@ons	that	are	infeasible	to	verify.	

3.	 Contracts	that	must	reveal	a	result	only	aVer	a	certain	@me	or	event.	

4.	 Contracts	that	must	generate	an	anonymous	token	aVer	verifying	a	condi@on.	

5.	 Contracts	that	must	allow	proxy	signatures	on	transac@on	inputs.	

6.	 Mul@ple	token	classes	-	Token	quan@ty	splits.	

7.	 Proof-of-Stake	mining	and	secure	alloca@on	of	earnings.	

8.	 Contracts	that	require	different	behavior	based	on	persistent	global	states.	

9.	 Genera@on	and	use	of	secure	Pseudo-Random	token	descriptors	

10.	 Any	type	of	database	opera@on,	especially	non-indexed	(sequen@al	search)	database	lookups	

11.	 Database	of	all	Contract	Par@cipants	(for	triggered	revert/payout,	etc.)	

Slán-Chain™ Architecture DRAFT Page � of �5 52 (c) 2018 Brian McMillin

	

On	Distributed	Consensus	for	Very	High	TransacQon	Volumes	

Expect	peer-to-peer	flood	of	all	candidate	transac@ons	across	the	network.	

Minimize	unnecessary	network	traffic	devoted	to	replica@on	of	transac@ons.	

Establish	 a	 distributed	 consensus	 to	 pre-select	 	 block-approving	 candidates	 from	 a	 pool	 of	 bidding	
miners.	

Pay	successful	miners	as	well	as	ommers.	

Ensure	that	all	par@cipa@ng	peers	execute	and	validate	all	transac@ons	before	forwarding	on	network.	

Allow	 essen@ally	 unlimited	 block	 size	 as	 scaling	 mechanism	 for	 high	 transac@on	 speed.	 Typical	 of	
blockchain	architectures	we	use	a	near	constant	block	crea@on	rate,	but	variable	block	sizes.	

Use	fixed	payment	rate	for	bytes	on	the	chain	to	balance	transac@on	volume	with	cost	to	use.	

Choice	of	persistent	“Account”	concept	vs.	one-@me	HD	Wallet	addresses.	

Blockchain	Systems	typically	try	to	establish	costs	for		

1.Telecom	/	network	costs	for	distribu@ng	the	transac@ons	

2.Disk	cost	for	maintaining	the	blockchain	copies	

3.Memory	cost	for	maintaining	non-vola@le	account	data	(if	any)	

4.Memory	cost	for	maintaining	Merkle	Tree	lookup	for	Account	references	

5.CPU	costs	for	accessing	and	running	smart	contracts	

There	is	always	a	trade-off	between	sender-pays	vs.	receiver-pays.	This	needs	to	be	clearly	established.	
Also	appropriate	costs	for	extravagant	CPU	u@liza@on	for	view-only	func@ons.	

Establish	minimum	allowed	expecta@ons	for		

1.transac@on	volume,	

2.number	of	peer	servers,	

3.number	of	concurrent	ommer	selectors	

List	 chain	 control	 parameters	 that	 are	 subject	 to	 automa@c	 dynamic	 control	 and	 consensus	
modifica@on.	

All	of	the	extreme	bitwise	op@miza@ons	for	transac@on	size	become	moot	if	the	blockchain	is	intended	
to	be	used	for	searchable,	ad-hoc	data	and	there	is	sufficient	financial	incen@ve	to	pay	for	it.	

Slán-Chain™ Architecture DRAFT Page � of �6 52 (c) 2018 Brian McMillin

	

On	VoQng	System	Requirements	

Major	issues	in	all	vo@ng	systems	are	transparency,	security,	accessibility	and	audit-ability.	

How	can	we	create	a	contract	for	straight	Up/Down	Vo@ng?	

1. Who	can	vote?	Ballot	genera@on	for	each	Voter.	

2. Vote	Op@ons:	Veto,	Against,	Abstain,	For,		Ra@fy	

3. Max	One	vote	per	Ballot.	Change	your	mind,	last	submioed	Ballot	counts	

4. Voter	can	Review	Ballot	Selec@on	and	verify	correct	vote	was	cast	

5. Predefine	What	Is	the	Quorum	

6. Predefine	Approval	Threshold,	either	absolute	or	by	a	margin	

7. Maintain	secrecy	of	ballots	cast	

8. Reveal	final	Tally	only	aVer	deadline	

How	can	we	verify	Voter	Eligibility	before	genera@ng	a	Ballot	for	her.	

Do	we	need	to	be	able	to	revoke	an	issued	ballot	during	the	elec@on	period?	

What	about	Proxies?	

What	about	selec@on	from	mul@ple	candidates?	

How	to	handle	Top	M	of	N	vo@ng.	Each	Voter	gets	to	vote	X	@mes.	

How	to	handle	weighted	vo@ng	where	vote	is	propor@onal	to	the	value	of	a	stake.	Must	be	stake	value	
at	a	specified	@me,	i.e.	the	end	of	the	last	quarter	or	start	of	vo@ng.	

Slán-Chain™ Architecture DRAFT Page � of �7 52 (c) 2018 Brian McMillin

	

Fees	for	Perpetual	Storage	Viewed	as	an	Annuity	

We	need	to	incen@vize	long-term	storage	of	large	data	sets.	

Storage	must	be:	secure,	redundant	and	available	

When	the	data	is	added	to	the	Store:	

collect	a	fee	propor@onal	to	the	amount	of	data		

use	the	fee	to	purchase	an	annuity	

the	annuity	periodically	pays	Storage/Network	providers	

We	must	allow	propor@onal	claims	on	the	annuity	payout	

• By	any	or	all	Storage/Network	Providers	

• AVer	providing	the	service	

We	must	verify	the	level	of	service,	probably	using	con@nuous	dynamic	audit.	

Network	architecture	should	include:	

• Con@nuous	background	sweep	of	the	Distributed,	Peer-to-Peer	Block	Store	

• Confirm	the	iden@ty	(payment	creden@als)	of	the	ac@ve	Providers	

• Prevent	block	forgeries	or	audit	spoofing	by	verifying	all	Blocks	

• Establish	maximum	background	level	of	network	traffic	for	replica@on	and	audit	

• Rely	on	sta@s@cal	valida@on	of	Block	and	Provider	existence	

The	performance	sta@s@cs	should	be	placed	on	the	blockchain.	

Make	payments	–	upon	request	–	to	Provider	via	a	Contract.	

Actuarial	analysis	is	required	to	ensure	the	real-@me	fees	and	payouts	are	properly	adjusted	based	on:	

• Transac@on	fee	per	GB	Storage	

• Growth	Rate	of	the	annuity	cryptocurrency	account	

• Exchange	rate	of	cryptocurrency	for	actual	services	rendered	

• Value	of	Storage	and	Network	services	in	the	world	at	large	

• Poten@al	Interest	or	Earnings	from	the	Annuity	Cryptocurrency	Account	

Slán-Chain™ Architecture DRAFT Page � of �8 52 (c) 2018 Brian McMillin

	

Concerning	Access	to	the	Distributed	Blockchain	Storage	

Previous	Blockchain	implementa@ons	have	assumed	that	the	Blockchain	would	be	small	enough	to	be	
replicated	to	all	nodes	that	needed	to	perform	audits	or	analyses.	

The	true	Peer-to-Peer	Distributed	Blockchain	has	no	size	limita@on.	

It	 is	 therefore	necessary	 to	collect	Access	Fees	 from	third	par@es	and	distribute	 those	 fees	equitably	
among	the	providers	of	Storage	and	Networking	Services.	

Storage	and	Network	Service	Providers	(SNSP)		are	expected	to	handle	four	general	types	of	requests:	

1.	 Handling	the	Distribu@on	of	Candidate	Transac@ons	to	Ac@ve	Block	Producers	(Miners)	

2.	 Adding	and	Distribu@ng	New	Blocks	among	Ac@ve	Block	Producers	(Miners)	

3.	 Performing	Con@nuous	Background	Audit	and	Replica@on	(CBAR)	

4.	 Handling	the	fulfillment	of	Directed	Data	Requests	from	dApps	and	Wallets	

Candidate	Transac@ons	pay	fees	–	propor@onal	to	their	size	-	to	the	network	and	Producers	when	they	
are	added	to	a	Produced	Block.	

Con@nuous	Background	Audit	and	Replica@on	 (CBAR)	opera@ons	ensure	 the	equitable	distribu@on	of	
fees	and	the	integrity	of	the	Storage	and	Networking.	

Directed	 Data	 Requests	 from	 outside	 the	 Blockchain	 Core	 Func@onality	 are	 made	 in	 the	 form	 of	
Transac@ons	with	a	specialized	fee	structure.		

Instead	of	the	normal	“fee	per	GB	Stored”	we	use	a	“fee	per	GB	Retrieved”.	

This	 is	made	prac@cal	by	the	structure	of	the	underlying	distributed	Block	Store	which	uses	fixed-size	
Segments	 and	 allows	 direct	 random	 access	 to	 specific	 Segments	 from	 anywhere	 in	 the	 Distributed	
Store.	

These	Directed	Data	 Requests	may	 be	 viewed	 as	micro-transac@ons	with	 (normally)	 extremely	 small	
fees.	

The	 scope	 of	 the	 requested	 data	 will	 be	 known	 at	 the	 @me	 the	 request	 is	 made	 so	 the	 fee	 is	
determinis@c	and	can	be	paid	up-front	by	the	requester.	

The	server	that	presents	the	request	to	the	network	will	appear	to	the	network	as	an	ordinary	Storage	
node	 and	 the	 ac@ons	 required	 to	 retrieve	 the	 selected	 Segments	 will	 fall	 in	 among	 the	 ordinary	
network	traffic	between	Storage	nodes.	

It	is	normally	expected	that	nodes	that	handle	incoming	Directed	Data	Requests	will	also	act	as	Storage	
nodes	 since	 the	 hardware	 and	 networking	 requirements	 are	 the	 same	 and	 Storage	 nodes	 can	
par@cipate	in	the	Con@nuous	Background	Audit	and	Replica@on	(CBAR)	compensa@on	structure.	

Fees	paid	for	Directed	Data	Requests	join	the	pool	of	funds	available	for	distribu@on	as	CBAR	payments.	

Requests	for	Directed	Data	are	verified	against	the	Requester's	balance	as	a	normal	part	of	the	micro-
transac@on	opera@on	and	thus	inherently	limit	the	possibili@es	for	abuse.	

Slán-Chain™ Architecture DRAFT Page � of �9 52 (c) 2018 Brian McMillin

	

Concerning	the	Physical	Storage	of	the	Blockchain	

The	Storage	of	the	Blockchain	must	be:	

• Distributed	–	among	many	Service	Providers	

• Redundant	–	every	por@on	of	the	Blockchain	must	exist	in	mul@ple	loca@ons	

• Fault	Tolerant	–	Error	Correc@on	technology	ensures	against	loss	of	blocks	or	connec@vity	

• Indexable	–	Specific	Segments	of	the	Blockchain	must	be	randomly	accessible	

• Searchable	–	Queries	concerning	the	Content	of	the	Blockchain	must	be	fast	and	feasible	

• Permanent	–	Blocks	and	Segments	of	the	Blockchain	must	be	immutable	

• Unlimited	–	There	should	be	no	arbitrary	limit	to	the	size	of	the	Blockchain.	

In	addi@on,	there	must	be	a	mechanism	for	audi@ng	the	performance	of	Storage	and	Network	Service	
Providers	(SNSPs)	and	ensuring	fair	and	appropriate	compensa@on	for	those	Services.	

This	can	be	accomplished	by	breaking	the	Blockchain	into	fixed-size	Segments	for	access,	storage	and	
transport.	Segments	become	the	redundant,	distributed	element	among	mul@ple	SNSPs.	

New	Blocks	are	added	to	the	end	of	the	Blockchain,	broken	into	Segments	as	required,	and	distributed	
among	SNSPs.	 The	addi@on	of	new	Segments	also	entails	 the	addi@on	of	 Index	and	Error	Correc@on	
Segments	used	in	the	access	and	fault	recovery	processes.	

Once	created,	Segments	are	a	permanent,	unchanging	feature	of	the	Blockchain	and	are	iden@fied	by	
their	unique	Hash.	It	is	this	Hash	value	that	is	used	by	any	server	to	request	a	specific	Segment	from	the	
Blockchain	Network.	

Requests	 for	 par@cular	 Segments	 across	 the	Network	 are	handled	 as	micro-transac@ons	placed	onto	
the	Blockchain.		

By	making	 the	Networking	Access	 requests	 look	 like	ordinary	Transac@ons,	 the	payment	 for	 services,	
audit	 of	 performance	 and	 quality,	 and	 background	 replica@on	 become	 an	 inherent	 feature	 of	 the	
opera@on	of	the	Blockchain.	

The	specific	Transac@ons	 that	 request	Segments	 from	the	Blockchain	may	have	specific	 features	 that	
facilitate	 access	 to	 sets	 of	 Segments	 or	 data	 related	 to	 different	 aspects	 of	 the	 Blockchain	 –	 the	
important	thing	being	that	there	will	be	a	fixed	upper	limit	to	the	amount	of	data	that	will	be	retrieved	
by	any	request,	and	that	it	will	be	paid	for	appropriately	by	the	requester.	

The	Segment-based	underlying	storage	mechanism	should	be	thought	of	as	the	Storage	and	Network	
Protocol	layer,	underlying	the	actual	Blockchain	and	Transac@on	layer.	

The	 peer-to-peer	 networking	 protocol	 supports	 the	 secure	 propaga@on	 of	 Segments,	 genera@on	 of	
performance	Audit	 records	 and	–	 importantly	 –	 the	@mely	 sharing	of	 Candidate	 Transac@ons	 among	
Ac@ve	 Block	 Producers	 to	 allow	 the	 Candidate	 Transac@ons	 to	 be	 properly	 incorporated	 into	 new	
Blocks.	

Ac@ve	Block	Producers	announce	their	requests	for	and	availability	of	Candidate	Transac@ons	by	simply	
publishing	 signed,	 @mestamped	 Bloom	 Filters	 to	 their	 peers	 and	 sending	 and	 receiving	 Candidate	
Transac@on	data.  

Slán-Chain™ Architecture DRAFT Page � of �10 52 (c) 2018 Brian McMillin

	

Concerning	the	Scalability	of	the	Blockchain	

The	Bitcoin	Blockchain	is	currently	about	165	GB	and	can	grow	at	a	maximum	of	52	GB	per	year.	

Much	has	been	wrioen	concerning	“Blockchain	Bloat”	and	how	to	prevent	it.	

	 	 “It	is	a	Capital	Mistake	to	OpQmize	Too	Soon.”	
It	 should	 be	 considered	 axioma@c	 that	 the	 uses,	 data	 scope	 and	 transac@on	 rate	 of	 the	 Blockchain	
should	be	expected	to	grow.	

Placing	a	priori	limita@ons	on	the	design	–	in	an	aoempt	to	“save	a	few	bytes”	–		is	fatally	shortsighted.	

Some	solu@ons	aoempt	to	place	large	data	sets	in	“off	blockchain”	storage.	

Claims	that	these	solu@ons	s@ll	have	the	features	of	Blockchain	are	fundamentally	flawed.	

1.	 It	 is	not	possible	 for	 the	actual	 contents	of	 a	Blockchain	Transac@on	 to	be	 searched	by	 third-
par@es	if	it	requires	off-chain	access.	

2.	 There	is	no	assurance	of	the	long-term	availability	of	off-chain	data.	

3.	 The	 integrity	 of	 off-chain	 data	 is	 dependent	 on	 the	 arbitrary	 backup	 and	 security	 policies	 of	
unknown	providers.	

4.	 The	accessibility	and	bandwidth	available	from	off-chain	providers	is	unknowable.	

5.	 The	enforceability	of	Contracts	involving	off-chain	data	can	be	arbitrarily	compromised.	

Therefore,	 ALL	 data	 rela@ng	 to	 Blockchain	 Transac@ons	 and	 Contracts	 MUST	 be	 stored	 on	 the	
Blockchain	 and	 make	 use	 of	 the	 Blockchain's	 own	 Distributed	 Search	 and	 Distributed	 Consensus	
mechanisms.	

Further,	all	efforts	to	reduce	the	number	or	scope	of	Transac@ons	on	the	Blockchain	are	inappropriate	
and	doomed	to	failure.	

The	fee	structure	associated	with	Blockchain	Transac@ons	should	be	fundamental	to	its	growth:	

1.	 Charge	 adjustable	 fees	 sufficient	 to	 support	 the	 long-term	 opera@on	 of	 the	 Blockchain	
Infrastructure,	

2.	 Allow	Market	Forces	to	adjust	the	scope	of	Transac@on	size	and	frequency	based	on	their	value	
to	the	dApps,	Wallets	or	other	users	of	the	Blockchain	that	generate	the	Transac@ons.	

Slán-Chain™ Architecture DRAFT Page � of �11 52 (c) 2018 Brian McMillin

	

Concerning	Turing	Completeness	in	Blockchain	VMs	

The	Ethereum	White-paper	 claims	 that	 there	 is	 no	penalty	 for	providing	Turing	Completeness	 in	 the	
Virtual	Machine	(VM).	

This	claim	assumes:	

• Use	a	Gas	Limit	to	ensure	@mely	termina@on	

• Requirement	for	doing	CALL	instruc@ons	to	other	contracts	

• No	downside	to	having	program	loops	

HOWEVER,	it	turns	out	that:	

1.	 Miners	do	not	actually	need	any	form	of	non-monotonic	execu@on	sequences	

	 	 Condi@onals	are	required,	but	using	forward	branches	only.	

2.	 Miners	do	not	actually	need	to	execute	contract	code	themselves	

We	can	shiV	the	burden	of	Contract	evalua@on			

	 FROM	a	Consensus	of	Trusted	Miners		

	 TO	a	Consensus	of	Trusted	Judiciary.	

Contract	Code	can	be	wrioen	in	any	convenient	programming	language.	

Payments	to	Judges	may	be	made	under	arbitrary	terms	–	even	“off	chain”,	or	private	currency.	

Arbitrarily	huge	data	sets	may	be	involved	in	Transac@on	I/O.	

It	is	incumbent	on	the	User	to	ensure	that	the	large	data	sets	are	available	on	the	blockchain	in	a	@mely	
manner	when	presented	to	the	Judiciary	and	Block	Producers	in	@me	to	be	validated.	

We	need	to	be	able	to	revise	or	upgrade	Contracts.	

This	implies	some	type	of	Table	Lookup	or	Redirec@on	step	within	the	VM.	

We	have	to	be	careful	to	prevent	Recursion	in	the	VM	–	by	design.	

	 Maybe	limit	code	to	ONE	CALL	(Direct	or	Indirect).	Period.	

	 No	Loops	or	Func@ons	or	Libraries.	All	VM	code	is	specified	up-front	and	in-line.	

Let	the	Judiciary	handle	all	complex	Contracts,	including:	

• Long-winded	computa@ons.	

• Database	Lookups.	

• Anything	that	requires	Turing	Completeness.	

Hard	Rule:	Judiciary	EvaluaQon	may	NOT	access	ANY	off-chain	data. 

Slán-Chain™ Architecture DRAFT Page � of �12 52 (c) 2018 Brian McMillin

	

What	is	a	Blockchain	Miner?	

1.	 Verifies	all	blocks	in	the	current	chain	

2.	 Verifies	all	Proposed	Transac@ons	

3.	 Selects	Proposed	Transac@ons	to	build	a	Proposed	Block	

4.	 Confers	with	other	Miners	to	reach	a	consensus	on	next	Block	

	 1.	 Bitcoin	uses	Proof-of-Work	

	 2.	 Dash	uses	Buy-in	for	vo@ng	privileges	

	 3.	 IOTA	mines	everything	and	adds	to	a	web	of	adjacent	points	

5.	 Receives	payment	for	Block	plus	Commissions	and	Tips	

6.	 Commissions	are	based	on	transac@on	length,	memory	usage	

I	propose	the	determinis@c	selec@on	of	the	next	Miner	from	a	pool	of	Miner	Candidates	that	have	paid	
a	per-round	ante.	Think	of	the	ante	as	a	bonded	contract	to	perform	a	specific	service	at	a	given	@me.	

For	each	Block	Interval,	the	next	winning	Miner	must	produce	a	valid	Block	on	@me	or	lose	his	ante.	

Bids	for	future	slots	will	be	taken	at	periodic	intervals.		

Mul@ple	winners	will	be	selected	from	the	candidate	pool	and	determinis@cally	assigned	future	Block	
numbers	to	Produce.	

Overlapping	lists	of	bid	winners	cause	mul@ple	Miners	to	compete	to	accurately	Produce	every	block.	

Mul@ple	Miners	that	compete	for	a	par@cular	block	are	ommers	and	each	gets	a	reward	for	Producing	
valid	 complementary	 blocks.	 The	blocks	will	 not	 be	 iden@cal	 since	 they	 are	 Produced	 and	 Signed	by	
different	Producers,	but	they	will	contain	iden@cal	transac@on	content.		

The	 "Winning"	 block	 is	 determinis@cally	 selected	 from	 the	 set	 of	 valid	 ommers	 and	 receives	 an	
addi@onal	reward.	

An	ommer	that	signs	a	mismatched	Block,	or	who	fails	to	Produce	a	block	at	all,	forfeits	his	ante	(Bond).	

Bids	are	all	made	ahead	of	@me.	A	bid	is	a	transac@on	added	to	a	specifically	numbered	block	and	the	
bids	close	before	any	selec@on	is	made.	The	selec@on	of	winning	bids	involves	XOR-ing	bid	hashes	with	
a	block	hash	that	was	created	aVer	the	closing	of	the	bids.	The	N	lowest	numerical	values	of	the	XOR	
results	are	used	to	select	and	order	winning	bidders.	Bidders	that	are	not	Winners	(greater	than	N	in	
sequence)	are	not	used	and	have	their	ante	immediately	refunded.	

All	blocks	are	built	by	Producers	determinis@cally	and	are	verified	by	all	other	Producers.	

Producers	must	have	no	free	will	in	the	selec@on	or	organiza@on	of	Transac@ons	into	Blocks.	

The	 lack	of	 free-will	 allows	agreement	among	Producers	and	ensures	 that	Block	Hashes	will	be	 truly	
random	and	cannot	be	manipulated	by	Users,	Producers	or	Miners.	

Slán-Chain™ Architecture DRAFT Page � of �13 52 (c) 2018 Brian McMillin

	

Blockchain	IncenQves	

Many	 opera@ons	 of	 a	 blockchain	 ecosystem	 can	 be	 dictated	 explicitly	 by	 the	 rules	 and	 opera@ng	
parameters	of	the	programs	that	implement	the	technology.	

Other	aspects	require	incen@ves	to	achieve	desired	behavior.	

Typically	the	use	of	a	financial	profit	mo@ve	can	provide	the	necessary	incen@ve.	

Every	par@cipant	 in	 the	blockchain	ecosystem	needs	to	be	able	to	expect	 the	possibility	of	a	posi@ve	
return	for	his	contribu@on.	

Careful	 study	 of	 the	 incen@ve	 structure	 must	 be	 made	 to	 ensure	 that	 no	 rewards	 are	 present	 for	
undesired	behavior.	

This	is	especially	true	in	the	case	of	off-chain	rewards	that	can	accrue	to	bad	actors	who	cause	outages	
or	corrup@on	of	services.	

We	need	to	look	at:	

1.	 Incen@ve	to	Ante	Up	and	become	a	Bonded	Producer	

2.	 Incen@ve	for	Honesty	

3.	 Penalty	for	trying	to	Buy	the	Producer	Bidding	Pool	

4.	 Penalty	for	Collusion	(or	prevent	it	altogether)	

Producers	profit	from	

1.	 New	Block	Bounty	(maybe	as	an	Asymptote	like	Bitcoin)	

2.	 Transac@on	Commission	-	What	fees	should	be	required	

3.	 Forfeited	Bonds	from	misbehaved	Producers	

Slán-Chain™ Architecture DRAFT Page � of �14 52 (c) 2018 Brian McMillin

	

Blockchain	Requirements	

How	can	we	combine	the	principle	features	of	Blockchain:	

1.	 Distributed	Consensus,	and	

2.	 Immutable	Historical	Ledger	

	with:	

1.	 Unlimited	Data	Store	

2.	 High	Transac@on	Volume	

3.	 Small	Data	Descriptors	(i.e.	Data	Handles)	

4.	 Fast,	Determinis@c	Programmability	

We	must	ensure	that	

	 Data	is	only	stored	once	in	a	chain	

	 Data	Store	is	in	Immutable	Crea@on	Order	

	 Data	is	accessible	through	indexes	to	variable-sized	blocks	

	 Data	descriptors	within	individual	Transac@ons	are	linked	to	(single)	instance	of	actual	data	

Common	 opera@ons	 must	 be	 able	 to	 be	 accomplished	 as	 rapidly	 as	 possible	 in	 a	 distributed	
environment:	

	 Transac@ons	 are	 grouped	 into	 Blocks	 which	 are	 verified	 by	 the	 distributed	 consensus	
mechanism	

	 B-Tree	and	linked	lists	support	rapid	search	for	all	references	to	specific	data	elements	

	 B-Tree	is	periodically	added	to	the	blockchain	store	to	allow	rapid	restart	

The	founda@on	of	the	storage	and	network	transport	is	based	on:	

	 Blocks	can	span	fixed-sized	Segments	

	 Segments	are	iden@fied	by	hashes	

	 Segment	Order	is	described	by	Directory	Segments	

	 There	exist	Error	Correc@on	(ECC)	Segments	to	provide	fault	tolerance	

Slán-Chain™ Architecture DRAFT Page � of �15 52 (c) 2018 Brian McMillin

	

On	ReplicaQon	of	Extremely	Large	Datasets	

The	“Blockchain”	needs	to	contain	ALL	data	required	to	establish	 the	 ini@al	condi@ons,	progress,	and	
final	dispensa@on	of	contractual	obliga@ons.	

Unlike	the	Bitcoin	situa@on	which	embodies	a	simple	crypto-currency	payment	model,	smart	contracts	
covering	business	and	personal	informa@on	may	require	large	elements	of	rarely-used	Bulk	Data.	

Bulk	Data	must	remain	permanently	available	for	audit	or	seolement	purposes.	

Off-chain	storage	is	not	acceptable	due	to	lack	of	guarantees	rela@ng	to	custodianship	and	availability,	
which	would	fundamentally	undermine	the	value	of	smart	contracts	in	the	first	place.	

Large	elements	of	rarely-used	Bulk	Data	must	be	interspersed	with	very	small	transac@on	elements	that	
may	be	needed	with	extraordinary	frequency.	

An	example	of	a	rather	large	element	would	be	a	copy	of	the	current	Transac@on-List	B-tree.	

During	normal	opera@on	it	is	expected	that	periodic	copies	of	the	complete	B-Tree	are	appended	to	the	
data	store	in	order	to	enable	rapid	access	by	new	Nodes	that	may	join	the	blockchain.	

In	order	to	prevent	unacceptably	asymmetric	growth	of	the	B-Tree	used	to	look	up	Transac@ons	in	the	
blockchain	it	is	occasionally	necessary	to	perform	a	re-leveling	opera@on.	

Re-leveling	 opera@ons	 on	 the	 B-Tree	 occur	 as	 needed	 and	 will	 always	 occur	 at	 the	 same	 @me	
throughout	the	network	since	they	are	caused	by	the	addi@on	of	iden@cal	transac@ons.	

These	re-leveling	opera@ons	require	minimal	processor	@me	but	do	result	in	the	rewri@ng	of	many	links	
within	the	B-Tree.	

When	 a	 new	Producer	 or	 Server	 joins	 the	 network	 it	will	 be	 able	 to	 request	 the	 current	 blockchain	
backwards	to	the	most	recently	added	B-Tree	image.	

The	 new	 Server	 then	 updates	 the	 B-Tree	 using	 the	 sequence	 of	 recent	 Transac@ons	 to	 create	 the	
correct,	current	B-Tree	and	therefore	an	internal	state	that	matches	every	other	Server	in	the	network.	

There	may	be	a	rule	that	ensures	that	current	copies	of	the	B-Tree	are	appended	frequently	enough	to	
make	the	startup	@me	for	these	new	Servers	reasonable.	

Like	many	large	data	elements	on	the	blockchain,	the	Transac@on-List	B-Tree	in	the	example	might	be	
accessed	a	few	hundred	@mes	before	a	more	recent	instance	supersedes	it.	

Older	B-Tree	Elements	are	purely	archival	and	might	never	be	needed	again	–	HOWEVER	–	they	ensure	
that	@me-travel	against	a	huge	blockchain	can	work	in	reasonable	@me.	

Slán-Chain™ Architecture DRAFT Page � of �16 52 (c) 2018 Brian McMillin

	

Storing	and	Sharing	a	Blockchain	

There	is	a	difference	between	the	Segment	Store	and	the	Blockchain	Logical	Address	Space.	

The	Segment	Store	is	a	collec@on	of	fixed-size	segments,	each	iden@fied	by	the	hash	of	their	contents.	

Every	segment	maps	to	the	logical	addresses	of	a	por@on	of	the	Blockchain.	

The	 segments	 are	 ordered	 to	 provide	 an	 indexable	 list	 that	 allows	 loca@ng	 par@cular	 data	 within	
segments.	

Segments	are	added	as	new	data	is	created	and	added	to	the	blockchain.	

Segment	directories	are	segments	that	occur	periodically	within	the	sequence	of	segments	and	list	the	
Segment	IDs	(hashes)	of	each	of	the	previous	Segments.	

Segment	directories	also	list	the	IDs	of	Error	Correc@ng	(ECC)	Segments	that	are	periodically	added	to	
the	Segment	Store	to	provide	overlapping	fault	tolerance.	

Tree	Directory	Segments	may	also	be	added	to	allow	rapid	access	to	par@cular	areas	of	 the	Segment	
Store	(a	therefore	the	Blockchain)	without	the	need	to	trace	the	en@re	chain	of	Segment	Directories.	

We	have	the	following	different	types	of	segments	in	the	Segment	Store:	

1.	 Blockchain	Address	Space	-	containing	Blockchain	Data.	

2.	 Segment	Directory	–	Linked	List	of	Segment	IDs		

3.	 ECC	 Segments	 –	 Periodic	 Error	 Correc@on	 data	 for	 fault	 tolerance	 within	 the	 sequence	 of	
Segments	

4.	 Segment	Directory	Tree	–	Tree	structure	for	rapid	access	to	Segment	Directories.	

Segments	form	a	con@nuous	list	of	storage	regions	that	can	be	indexed	by	number.	

These	 segment	 numbers	 can	 be	 used	 to	 determine	 algorithmically	 which	 of	 the	 segment	 types	 is	
referenced.	

Looking	up	the	par@cular	Segment	ID	(i.e.,	the	hash	of	the	contents	of	the	par@cular	Segment)	allows	
the	actual	data	Segment	to	be	requested	from	the	network.	

Blockchain	 Logical	 Addresses	 form	 a	 unified,	 con@guous	 sequen@al	 are	 of	 memory	 spread	 across	
Segments.	

Segment	 Directories	 can	 be	 used	 to	 find	 the	 ID	 (hash)	 of	 a	 Segment	 containing	 a	 par@cular	 Logical	
Address.	

The	distributed	network	protocol	allows	a	Node	or	Peer	to	request	sets	of	Segments	using	only	their	
IDs.	

Requests	for	IDs	propagate,	as	do	Responses,	sending	matching	Segments	back	to	Requestors.	

This	tends	to	make	more	recently	used	or	popular	Segments	more	widely	and	rapidly	available.	

Slán-Chain™ Architecture DRAFT Page � of �17 52 (c) 2018 Brian McMillin

	

How	can	we	Improve	the	Bitcoin	Blockchain?	

The	Bitcoin	Mistake	is	allowing	Miners	any	free	will	at	all.	

Bitcoin	 allows	each	 individual	Miner	 to	 choose	Candidate	 transac@ons	 for	 each	block	 independently,	
and	to	order	those	transac@ons	within	the	block	at	will.	

The	restricted	size	of	a	Block	causes	the	miners	to	preferen@ally	select	high-fee	transac@ons	and	delay	
low-fee	ones	for	possibly	unlimited	periods.	

Low-fee	transac@ons	might	not	be	mined	at	all,	even	when	blocks	are	not	full.	

This	means	that	it	is	not	possible	to	posi@vely	assure	that	a	candidate	transac@on,	once	submioed,	will	
EVER	be	added	to	the	blockchain,	or	 that,	aVer	a	number	of	blocks,	 that	a	par@cular	 transac@on	will	
NEVER	be	added.	

We	can	eliminate	free	will	by	

1.	 requiring	ALL	valid	Candidate	Transac@ons	to	be	used	in	the	next	block	mined,	and	

2.	 placing	them	into	the	block	in	a	determinis@c	order.	

To	 accomplish	 this,	we	 force	 all	 Candidate	 Transac@ons	 to	 request	 to	 be	 included	 in	 a	 specific	Block	
Number.	

Candidate	Transac@ons	will	either	be	accepted	into	the	requested	block	or	discarded.	

Discarded	Candidate	Transac@ons	must	be	resubmioed	and	target	a	subsequent	Block	Number.	

This	eliminates	any	paid	priori@za@on	of	Transac@ons.	

It	 is	 expected	 that	 Per-Transac@on	 fees	 are	 based	 solely	 on	 the	 size	 (number	 of	 bytes)	 of	 the	
Transac@on	data.	

This	also	eliminates	arbitrary	confirma@on	delays	across	transac@ons.	

An	 added	 benefit	 is	 a	 reduc@on	 in	 peer-to-peer	 bandwidth	 u@liza@on	 since	 shared	 transac@on	
candidates	 need	 to	 traverse	 the	 network	 only	 once	 and	 nodes	 can	 then	 accurately	 build	 the	
corresponding	blocks	locally	-	without	the	need	to	communicate	the	final	blocks	themselves.	

Blocks	during	high-volume	periods	may	become	arbitrarily	large.	

Fees	may	be	adjusted	-	perhaps	based	on	the	running	average	of	Block	length.	

Fee	adjustments	must	be	determinis@c	and	predictable	over	 reasonable	@me	scales	 in	order	 to	have	
the	intended	effect	of	load	leveling	on	the	network.	

Slán-Chain™ Architecture DRAFT Page � of �18 52 (c) 2018 Brian McMillin

	

How	can	we	Improve	the	Ethereum	Blockchain?	

1.	 The	 use	 of	 a	 Turing-Complete	 engine	 for	 smart	 contract	 programmability	 means	 that	 the	
opera@on	of	the	blockchain	may	be	non-determinis@c.	

Non-determinism	means	that	the	opera@on	of	par@cular	contracts	cannot	be	guaranteed	at	the	@me	of	
their	crea@on	and	the	par@cipants	cannot	know	with	absolute	certainty	what	they	are	agreeing	to.	

Obscuring	 the	opera@on	and	effects	of	a	Contract	 is	exactly	 the	opposite	of	behavior	 that	 should	be	
expected	of	a	smart	contract.	

2.	 The	 use	 of	 Accounts	 to	 store	 a	 history	 of	 cryptocurrency	 transac@ons	 means	 that	 those	
transac@ons	are	not	private	and	that	the	web	of	Pay	and	Spend	ac@ons	associated	with	the	Accounts	
are	public	knowledge	

The	use	of	Accounts	means	that	the	cryptographic	key	required	to	access	an	Account	for	Spending	will	
typically	be	used	more	than	once,	thus	viola@ng	a	basic	tenet	of	cryptographic	security.	

The	use	of	unified	Accounts	also	defeats	 the	security	of	single-use	 iden@fiers	provided	by	Hierarchial	
Determinis@c	(HD)	Wallets.	

3.	 Allowing	 Gas	 Limits	 to	 affect	 the	 opera@on	 –	 or	 even	 the	 validity	 –	 of	 transac@ons	makes	 it	
essen@ally	impossible	to	determine	the	effects	of	a	Contract	at	the	@me	of	its	crea@on	or	instan@a@on.	

Try	 separa@ng	 the	 Smart	 Contract	 Evalua@on	 from	 the	 Mining	 Opera@ons,	 possibly	 using	 trusted	
signatures.	

Use	only	sequen@al	programming	opera@ons	to	perform	valida@on	within	actual	Transac@ons.	

Allow	determinis@c	pseudo-random	opera@ons	to	select	the	output	des@na@ons	of	a	transac@on,	thus	
permivng	secure	obfusca@on	of	the	payment	web.	

Slán-Chain™ Architecture DRAFT Page � of �19 52 (c) 2018 Brian McMillin

	

How	can	we	Pay	Bulk	Storage	and	Bandwidth	Providers?	

Blockchain	implementa@ons	tradi@onally	incorporate	the	concept	of	Full	Nodes,	meaning	servers	that	
store	complete	copies	of	 the	blockchain	and	par@cipate	as	Miners	to	validate	and	add	new	Blocks	to	
the	chain.	

Ul@mately,	we	want	to	 implement	true	blockchains	that	 incorporate	huge	quan@@es	of	bulk	data	in	a	
fully	secure	and	transparent	manner.	

This	cannot	be	accomplished	by	trying	to	adapt	exis@ng	file-oriented	stores	such	as	the	Interplanetary	
File	System	(IPFS)	because	the	data	items	in	ques@on	bear	essen@ally	no	rela@onship	to	tradi@onal	files.	

Organiza@ons	may	want	to	par@cipate	in,	and	profit	from,	the	storage	and	communica@on	of	bulk	data	
without	making	the	commitment	of	becoming	a	Block	Producer	(Miner).	

Conversely,	 other	 organiza@ons	 may	 choose	 to	 become	 Block	 Producers	 and	 commit	 to	 the	 @mely	
Mining	of	blocks	but	find	it	overwhelming	to	maintain	the	tradi@onal	physical	infrastructure.	

Thus,	Block	Producers	could	recruit	Stake	Holders	to	invest	and	share	in	the	profits	of	Block	Produc@on,	
and	Networked	Storage	Providers	could	recruit	Block	Producers	to	subscribe	to	their	services	based	on	
promises	of	security,	redundancy	and	reliability.	

The	 key	point	 here	 is	 the	 separa@on	of	 Storage	 and	Networking	 tailored	 specifically	 to	 the	needs	of	
Blockchain	opera@ons	from	the	Bonded	Proof-of-Stake	opera@ons	of	the	Block	Producers	(Miners).	

The	 shared-stake	 Produc@on	 described	 here	 is	 a	 loose	 parallel	 to	 the	 Bitcoin	Mining	 Pool	 concept	 –	
holders	of	tokens	may	invest	in	“shares”	of	a	Producer	Bond	Stake	and	share	in	the	resul@ng	Producer	
bounty.	

There	 is	 no	 requirement	 that	 any	 single	 “node”	 or	 par@cipant	 in	 the	 opera@on	 of	 the	 Blockchain	
actually	be	in	possession	of	a	complete	copy	of	the	en@re	blockchain.	

Indeed,	the	essen@ally	random	hashes	used	to	iden@fy	individual	fixed-length	Segments	of	the	overall	
blockchain	 make	 it	 possible	 for	 individual	 Storage	 nodes	 to	 preferen@ally,	 determinis@cally,	 store	
random	selec@ons	from	the	complete	blockchain.	

Allowing	Nodes	to	store	determinis@c	subsets	of	the	blockchain	can	enable	more	effec@vely	directed,	
simultaneous	network	traffic.	

The	accurate	delivery	of	data	Segments	is	ensured	through	the	ability	to	verify	that	the	hash	of	the	data	
within	the	Segment	matches	the	handle	used	to	retrieve	it	from	the	network	storage.	

Communica@ons	 reliability	will	 be	 ensured	 through	 independent,	 parallel	 connec@ons	 using	mul@ple	
Storage/Network	providers.	

Storage/Network	 providers	 are	 expected	 to	 serve	 not	 only	 Block	 Producers	 (Miners)	 but	 also	 other	
clients	that	need	the	ability	to	access	the	blockchain.	

Client	 blockchain	 access	 could	 be	 used	 to	 create	 Oracles,	Monitors,	 Analysis	 Tools,	 etc.	 without	 the	
need	to	ever		receive	and	store	the	actual	bulk	data	or	complete	blockchain. 

Slán-Chain™ Architecture DRAFT Page � of �20 52 (c) 2018 Brian McMillin

	

Smart	Contracts	and	the	Blockchain	Judiciary	

There	is	no	reason	for	the	evalua@on	of	smart	contracts	to	be	handled	by	block	Miners.	

All	that	is	really	needed	is	for	the	miners	to	validate	the	signatures	on	the	candidate	transac@ons.	

Signatures	may	include	those	of	members	of	a	trusted	judiciary.	

The	defini@on	of	trusted	 judiciary,	and	membership	 in	that	group,	may	be	stored	as	elements	on	the	
blockchain.	

This	 allows	 the	 programma@c	 execu@on	 of	 the	 contract	 code	 to	 be	 handled	 (and	 paid	 for)	
independently	of	the	very	fast	processing	of	blockchain	mining	opera@ons.	

The	func@on	of	the	trusted	 judiciary	 is	to	execute	the	program	code	describing	a	smart	contract	-	on	
request	-	and	to	provide	a	signed	cer@ficate	of	the	results.	

The	 trusted	 judiciary	 may	 become	 a	 cooage	 industry	 with	 dynamic	 price	 structure	 similar	 to	 SSL	
Cer@ficate	Authori@es	on	the	Internet.	

As	 part	 of	 the	 contractual	 agreement	between	par@es	 that	 create	 the	 transac@on	 that	 becomes	 the	
smart	contract,	the	par@es	specify	the	terms	of	the	Trusted	Judiciary	that	will	evaluate	the	contract.	

The	name	of	the	Trusted	Judiciary	is	similar	to	a	Jurisdic@on	in	common	law.	

The	 name	of	 the	 Trusted	 Judiciary	 is	 a	Handle	 that	 implies	 a	 set	 of	 independent	 Signing	Authori@es	
(think:	individual	judges	or	courts).	

The	terms	of	the	contract	specify	the	vo@ng	structure	of	the	judges	within	the	Trusted	Judiciary.	

This	allows	the	par@cipants	in	the	Contract	to	specify	a	priori	whether	the	Contract	must	be	agreed	to	
by	(for	example)	a	single	Judge,	a	quorum	of	the	Court,	Unanimous	decision,	etc.	

This	 brings	 the	 expected	 'consensus'	 concept	 to	 the	 smart	 contracts,	 but	 relieves	 the	 real-@me	
blockchain	opera@ons	of	the	burden	of	evalua@ng	(some@mes	lengthy)	contract	code.	

Blockchain	mining	opera@ons	simply	verify	the	signatures	of	the	Trusted	Judiciary	and	the	terms	of	the	
Transac@on.	

This	allows	all	transac@ons	on	the	blockchain	to	use	straighworward	linear	verifica@on	scripts,	including	
(if	included)	verifica@on	of	the	signatures	of	the	Judiciary.	

This	structure	allows	the	actual	membership	within	the	Trusted	Judiciary	to	change	with	@me	as	new	
Judges	are	added	or	old	ones	removed	in	a	separate	set	of	transac@ons	on	the	Blockchain.	

There	may	be	many	independent	Judiciaries	on	the	blockchain,	perhaps	devoted	to	evalua@ng	different	
types	of	contracts	wrioen	in	different	programming	languages	or	devoted	to	different	tasks.	

Note	 that	 this	 is	 a	 considerably	 different	 concept	 from	 using	 an	 off-chain	 Oracle	 as	 a	 “Judge-as-a-
Service”	for	dispute	resolu@on	as	part	of	exis@ng	hybrid	smart	contracts.	

Slán-Chain™ Architecture DRAFT Page � of �21 52 (c) 2018 Brian McMillin

	

Concerning	Persistent	Oracles,	Events,	Triggers	and	Timers	

Oracles	act	as	sources	of	new	informa@on	from	outside	the	blockchain	that	is	made	available	as	input	
to	transac@ons.	

Frequently	it	is	necessary	that	transac@ons	occur	automa@cally	under	certain	condi@ons	or	at	specific	
intervals.	

It	is	expected	that	the	services	that	automate	the	opera@on	of	transac@ons	will	be	wholly	independent	
of	 the	 services	 that	 append	 the	 transac@ons	 to	 the	 blockchain	 and	 those	 that	 distribute	 the	 blocks	
throughout	the	network.	

This	 automated,	 persistent	 opera@on	 consumes	 resources	 and	 may	 be	 expected	 to	 have	 certain	
performance	and	reliability	standards.	

In	order	to	meet	these	goals	the	smart	contracts	or	their	beneficiaries	should	be	expected	to	pay	a	fee	
to	the		provider.	

Notably,	 the	 provider	 is	 performing	 a	 service	 even	 in	 the	 absence	 of	 trigger	 condi@ons	 or	 new	
transac@ons	being	added	to	the	blockchain.	

Periodically	 execu@ng	 off-chain	 services	 should	 be	 ac@vated,	 paid	 for	 and	 terminated	 by	 specifically	
craVed	Transac@ons	placed	on	the	blockchain.	

The	 transac@on	 that	 establishes	 the	 request	 for	 off-chain	 services	 should	 describe	 the	 desired	
func@onality	and	service	level	as	well	as	the	terms	of	payment	and	warranty	expecta@ons.	

Slán-Chain™ Architecture DRAFT Page � of �22 52 (c) 2018 Brian McMillin

	

Think	the	Unix	Way	

Store	values	a	Printable	ASCII	Text.	

Never	use	binary	values.	

Never	use	Fixed-Width	fields	-	Always	use	field	and	value	delimiters.	

Use	Name/Value	pairs	where	possible.	

Never	depend	on	the	order	of	fields.	

Make	data	records	Human-Readable	where	possible.	

Never	assign	special	meaning	to	certain	numeric	values:	

	 Use	enumerated	text	instead	

DO	NOT	OPTIMIZE	STORAGE	FORMATS	

In	the	long	run,	saving	a	few	bits	will	not	maoer.	

In	any	case,	more	effec@ve	compression	will	be	provided	by	dedicated	Storage	and	Networking	layers. 

Slán-Chain™ Architecture DRAFT Page � of �23 52 (c) 2018 Brian McMillin

	

Concerning	Interest-Bearing	Cryptocurrency	

Gold	and	Bitcoin	are	alike	in	that	their	only	increase	or	decrease	in	value	is	due	to	Arbitrage	—	i.e.,	an	
exchange	with	other	value	representa@ons.	

	 Gold	or	Bitcoin	under	a	maJress	do	not	create	more	Gold	or	Bitcoin.	

Loans	of	 Fiat	Currency	 (via	Banks,	Bonds	or	Contracts)	may	 yield	more	 Fiat	 through	Arbitrage	 in	 the	
Stock	or	Bond	markets,	for	example.	

Slán-Coin™	is	different.	

Slán-Coin™	holdings	may	be	invested	-	via	a	Bond	-	in	the	opera@on	of	the	Slán-Chain™.	

In	exchange	for	this	investment,	a	valuable	service	will	be	provided:		

	 Transac@ons	will	be	accepted,	verified	and	added	to	the	Slán-Chain™.	

Fees	are	collected	in	order	to	post	Transac@ons	to	the	Slán-Chain™.	

The	collected	Transac@on	fees	will	be	appor@oned	to	the	Bond	holders	and	thence	to	the	Investors.	

This	effec@vely	represents	on-chain	Interest	paid	for	the	temporary	use	of	the	Slán-Coin™	investment.	

Features:	

1.	 No	minimum	investment	

2.	 Negligible	Transac@on	Fees	

3.	 Slán-Coin™	 investments	 may	 be	 aggregated	 into	 Pools	 and	 used	 by	 the	 operators	 of	 Server	
Nodes.	

4.	 These	Server	Nodes	are	the	fast,	reliable	network	connec@ons	that	host	the	Block	Producers.	

5.	 Block	Producer	Pools	may	compete	to	offer	different	Interest	Rates	to	Investors	

6.	 Everything	is	on-chain.	I.e.,	no	Arbitrage	or	off-chain	Exchanges	are	involved	

7.	 No	hardware,	SoVware	or	other	par@cipa@on	is	required	of	the	Investor 

Slán-Chain™ Architecture DRAFT Page � of �24 52 (c) 2018 Brian McMillin

	

Blockchain	Comparisons	

Satoshi’s Way Brian’s Way
Create a Cryptocurrency Create a Blockchain

Establish value by Offering Unlimited Storage

Establish Value by Offering Reliable Networking

Establish Value by Offering Smart Contracts

Add a Blockchain for Security Add Cryptocurrency to pay Fees for Services

Create New Bitcoin through Proof-of-Work Create new Slán-Coin™ through Block Production

Support On-Chain Investments that pay Interest in
Slán-Coin™

Limit Inflation through Asymptote in Block Mining Limit Inflation through Asymptote in Block Production

Establish External Value through Arbitrage Exchanges Establish External Value through Arbitrage Exchanges

Establish On-Chain Escrow to pay Annuity for Long-
Term Data Storage

Limit Growth with:

 Escalating Proof-of-Work,

 Limited Block Size and

 Limited Transaction Rate

Do Not Limit Growth in any way

Bitcoin has No Inherent Value Slán-Coin™ has Inherent Value

 derived from Storage,

 Networking and

 Contract Services

Storage

Networking

Computation

 are all Expenses -

 borne by Participants who are

 NOT COMPENSATED for their services.

Slán-Chain™ Architecture DRAFT Page � of �25 52 (c) 2018 Brian McMillin

	

Concerning	Slán-Chain™	Escrow	

Normal	transfers	of	Slán-Coin™	require	valida@on	of	the	Amount	and	Signature	of	the	Payer.	

“Escrow	Account”	is	a	property	of	the	Chain	which	has	no	private	key	and	requires	no	Signature.	

Funds	transfer	to	and	from	Escrow	are	handled	ONLY	by	hard-coded	rules	in	the	Producer	SoVware.	

Ini@al	Slán-Coin™	crea@on	(akin	to	Mining	in	Bitcoin)	is	an	Asymptote	paid	from	Escrow.	

Slán-Chain™	opera@on	(Bonded	Proof-of-Stake)	is	done	through	Transac@ons	against	Escrow.	

Perpetual	Data	Storage	fees	are	paid	into	Escrow.	

Fees	paid	into	Escrow	can	be	viewed	as	the	purchase	of	an	Annuity.	

The	 con@nuous	 background	 audit	 of	 Storage	 and	 Network	 Service	 Provider	 (SNSP)	 performance	
establishes	an	Annuity	amount	that	is	paid	from	Escrow	to	each	individual	SNSP. 

Slán-Chain™ Architecture DRAFT Page � of �26 52 (c) 2018 Brian McMillin

	

Slán-Chain™:	Forward	and	Backward	Linked	Blocks	

Typical	 Blockchains	 establish	 security	 and	 immutability	 through	 links	 in	 newer	 Blocks	 poin@ng	 to	
immutable	proper@es	of	previous	Blocks.	

Slán-Chain™	is	different:	

The	Bonded-Proof-of-Stake	looery	ensures	that	everyone	will	know	ahead	of	@me	the	iden@@es	of	the	
possible	Signers	(Producers)	of	specific	future	blocks.	

This	means	that	the	Slán-Chain™	will	have	forward	and	backward	signed	links	iden@fying	the	Producer	
of	a	given	block.	

This	 is	 in	 addi@on	 to	 the	 standard	 Backward	 links	 that	 establish	 the	 order	 and	 immutability	 of	 the	
Blocks	within	the	Chain.	

These	Bond	Signatures	are	verified	by	the	hundreds	of	coopera@ng	Block	Producers	par@cipa@ng	in	the	
Slán-Chain™.	

All	opera@on	of	the	Slán-Chain™	proceeds	as	rapidly	as	possible	with	no	wasted	computa@onal	effort	
and	minimum	opera@ng	cost.  

Slán-Chain™ Architecture DRAFT Page � of �27 52 (c) 2018 Brian McMillin

	

Storage Segment Replication

	

Lots	of	people	access	recent	Segments	so	they	will	be	present	on	many	Nodes	(Servers)	

Normally,	few	people	look	at	older	Segments,	however	-	

Some	old	Segments	are	of	con@nued	interest	and	are	widely	present.	

We	use	the	Storage	Network	Audit	as	a	background	opera@on	that	randomly	sweeps	ALL	segments	

This	ensures	that	the	number	of	extant	copies	of	any	par@cular	Segment	never	reaches	zero.	

Segments	may	occasionally	appear	inaccessible,	perhaps	due	to	excessive	network	delays.	

Error	Correc@on	Coding	(ECC)	is	automa@cally	invoked	as	needed	during	any	Storage	Access.	

Segments	will	therefore	be	recreated	as	needed	during	Audit	sweeps	and	ensure	future	availability.	

Envision	a	“Holographic	Data	Store”	with	essen@ally	no	locality	of	data:	

	 If	you	can	point	to	a	single	Chip	or	Drive	or	Data	Center	and	say	“that	is	the	loca@on	of	my	bits”	
you	are	doing	it	wrong.  

Slán-Chain™ Architecture DRAFT Page � of �28 52 (c) 2018 Brian McMillin

Prevalence of Segments Throughout the Network
Se

rv
er

s

0

25

50

75

100

Segment Age
Oldest Newest

	

How	Does	the	Slán-Chain™	Get	Started?	

There	must	be	a	Root	Chain	 Image	 that	assigns	 ini@al	 Slán-Coin™	 to	a	 sufficient	number	of	different	
Holders	to	enable	the	Bond	Looery	to	establish	sufficient	Block	Producers	for	opera@on	of	the	Chain.	

It	is	not	necessary	that	Block	Producers	use	different	Server	hardware.	

Hundreds	 ofBlock	 Producers	 (Bonded	 par@cipants)	 may	 be	 hosted	 by	 a	 handful	 of	 Amazon	 (AWS)	
Server	instances,	for	example.	

Block	 Producers	 are	 just	 unique	Accounts	 -	with	 sufficient	 Slán-Coin™	 to	 put	 up	 a	 Bond	 -	who	 have	
actually	placed	a	Bond	(Proof-of-Stake)	transac@on	onto	the	Slán-Chain™.	

Features:	

1.	 Discovery	Protocol	to	locate	other	SNSPs.	Preferably	Anonymous	and	unpredictable.	

2.	 	Connect	to	mul@ple	SNSPs	to	form	a	randomized	web	of	Network	Connec@ons.	

3.	 Request	Storage	Segment	(via	a	Bloom	Filter)	to	get	the	current	Chain	End.	

4.	 Begin	sharing	Candidate	Transac@ons	

5.	 Lurk	on	the	Network	long	enough	to	gain	confidence	enough	to	place	a	Bond	for	Produc@on.	

On	startup,	Block	Produc@on	will	probably	consist	almost	en@rely	of	Slán-Chain™	Bond	Transac@ons.	

The	 SNSPs	will	 publish	 the	 availability	 of	 external	 APIs	 to	 allow	 connec@ons	 to	 external	 par@es	who	
wish	to	ini@ate	Transac@on,	Store	or	Retrieve	data,	create	Smart	Contracts,	etc.  

Slán-Chain™ Architecture DRAFT Page � of �29 52 (c) 2018 Brian McMillin

	

Concerning	Slán-Chain™	Failure	Modes	

Several	failure	modes	are	possible	and	each	require	thoughwully	designed	remedies.	

1.	 Ini@al	Startup.	Crea@ng	the	first	connec@ons	and	consensus.	

2.	 Too	few	Bond	Bids	to	meet	the	ommer	requirement	of	the	Bond	Looery.	

3.	 Network	Par@@on	or	Chain	Fork.	

Recovery	from	Failure	

SNSP	Discovery	Protocol	finds	the	largest	Segment	and	Block	Number.	

	 There	must	be	a	mechanism	to	prevent	spoofing	and	establishing	a	consensus.	

Network	Time	Synchroniza@on	occurs	and	Heartbeat	Propaga@on	begins.	

Bids	are	Proposed	and	Propagated	filling	all	ommer	slots	for	upcoming	Bond	Looeries.	

The	 normal	 Looery	 process	 relies	 on	 the	 hash	 of	 a	 block	 following	 the	
close	 of	 bidding	 to	 randomize	 the	winners	 of	 the	 looery.	 This	must	 be	
simulated	during	startup.	

Valida@on	of	ini@al	Bids	consists	only	of	elimina@ng	duplicates	and	checking	sta@c	funds	availability.	

No	non-Bid	Transac@ons	are	allowed	un@l	normal	chain	opera@ons	resume.	

The	 first	 new	 Transac@ons	 are	 expected	 to	 be	 (as	 needed)	 Network	 Connec@on	 (bandwidth)	 fees	
between	SNSPs	as	the	network	connec@ons	are	(re)established.	

Once	the	Chain	is	running,	new	Transac@ons	from	outside	will	be	accepted. 

Slán-Chain™ Architecture DRAFT Page � of �30 52 (c) 2018 Brian McMillin

	

Concerning	TransacQons	

There	are	several	specific	types	of	Transac@ons	that	are	supported	by	the	Slán-Chain™.	

1.	 Cryptocurrency	Payment	with	op@onal	Data	Payload.	

2.	 Third-party	Request	for	Selected	Data	from	the	Blockchain.	

3.	 Performance	Audit	of	Storage	and	Network	Service	Provider	(SNSP).	

4.	 Bonded	Bid	for	Block	Produc@on	-	A	Bond	into	Escrow.	

5.	 Bonded	Bid	Looery	Results	-	List	Winning	Bidders	and	Return	of	Escrow	to	non-winning	Bidders.	

6.	 Alloca@on	of	Escrowed	Bonds	among	ommers	who	Produced	valid	Blocks.	

7.	 Payment	of	Annuity	Fees	to	Storage	and	Network	Service	Providers	(SNSPs)	

Connec@ons	between	SNSPs	allow	Segment	Request	and	Response	over	established,	pre-paid	channels	
with	only	occasional	new	Transac@ons	on	the	Slán-Chain™	for	Audit	and	Connec@on	Payment	required.	

Connec@ons	also	support	the	exchange	of:	

1.	 Candidate	Transac@ons	

2.	 Bids	by	Bonded	Producers	

3.	 Data	Storage	Segments	independent	of	Slán-Chain™	Opera@ons	

4.	 SNSP	Background	Replica@on	and	Audit.	

We	need	some	kind	of	SNSP	Discovery	Protocol.	

Block	Producers	(or	SNSPs)	must	pay	to	connect	to	the	network:	

1.	 To	prove	legi@macy	with	a	signed	Transac@on.	

2.	 To	ensure	good	behavior	and	fair	payment	for	network	traffic.	

How	can	a	new	player	get	invited	to	the	party?  

Slán-Chain™ Architecture DRAFT Page � of �31 52 (c) 2018 Brian McMillin

	

UTXOs or Accounts? Neither.

Bitcoin	 introduced	 the	 concept	 of	 Unspent	 Transac@on	 Outputs	 (UTXOs).	 Every	 Bitcoin	 Transac@on	
creates	one	or	more	outputs	with	rules	concerning	how	they	can	be	used.	Every	output	may	be	used	as	
an	input	to	a	future	transac@on	exactly	once,	if	the	correct	condi@ons	are	met	(i.e.	proper	signatures).	

All	Bitcoin	Miners	maintain	a	 list	of	every	Transac@on	that	has	yet	 to	be	spent	 (UTXO)	 in	order	to	be	
able	to	locate	and	verify	the	value	when	it	is	used	as	input	to	a	poten@al	new	Transac@on.	

Bitcoin	uses	intelligent	Wallet	Applica@ons	(off-chain	soVware	with	access	to	the	en@re	Blockchain)	to	
locate	the	possible	mul@ple	UTXOs	that	are	spendable	by	that	Wallet’s	private	keys.	These	UTXOs	may	
then	be	used	as	inputs	to	the	next	Transac@on	that	the	user	ini@ates.	

Conversely,	Ethereum	introduced	the	concept	of	Accounts	which	use	a	data	structure	that	 includes	a	
running	balance	 (and	other	data)	 for	 every	Account	 Iden@fier	 that	has	 ever	 existed.	 Every	 Ethereum	
miner	must	maintain	a	copy	of	this	Balance	Ledger	structure.	

Ethereum	Wallets	need	only	maintain	the	access	keys	for	a	par@cular	Account	and	the	running	balance	
is	 immediately	 available	 from	 the	 network.	 This	 immediate	 access	 comes	with	 the	 penalty	 that	 the	
current	balance	and	all	trading	partners	are	published	for	the	world	to	see.	

Slán-Coin™	is	Different:	

The	inherent	ability	to	look	up	every	instance	of	a	par@cular	data	value	via	a	linked	list	structure	allow	
us	to	safely	create	a	true	Credit	/	Debit	architecture.	

Therefore	we	can	instantly	approve	any	Credit	to		a	par@cular	ID.	

The	rules	prevent	any	account	balance	(chain	of	credits	and	debits)	from	becoming	nega@ve.	

This	allows	us	to	approve	any	Debit	aVer	tracing	the	transac@on	chain	backwards	over	recent	Credits	
and	Debits	un@l	we	see	a	balance	sufficient	to	cover	the	current	proposed	Debit.	It	is	not	necessary	to	
find	 the	 Actual	 Balance	 -	 we	 only	 need	 to	 know	 that	 the	 current	 Debit	 will	 not	 drive	 the	 balance	
nega@ve.	

Slán-Chain™ Architecture DRAFT Page � of �32 52 (c) 2018 Brian McMillin

	

Slán-Chain™	OperaQng	Parameters	

Several	parameters	must	be	chosen	to	establish	the	opera@ng	constraints	of	the	Slán-Chain™.	

1.	 Block	Produc@on	Rate.	

2.	 Window	for	pos@ng	Candidate	Transac@ons	for	a	given	Block.	

3.	 Adaptable	 suggested	 Transac@on	 Size	 to	 allow	a	 reasonable	 expecta@on	of	 Propaga@on	 to	 all	
Block	Producers	within	the	window.	

4.	 Number	of	Transac@on	Inputs	to	allow	a	reasonable	expecta@on	of	full	Valida@on	between	the	
close	of	the	window	and	the	pos@ng	of	the	specified	Block.	

5.	 Value	of	Bond	required	in	the	Bonded	Proof-of-Stake.	

6.	 Block	Delay	between	looery	Block	and	Block	Produced	by	the	first	winner.	

7.	 Number	of	parallel	Looery	ommers.	

8.	 Annuity	Rate	paid	for	Storage	

9.	 Annuity	Rate	paid	for	Bandwidth	usage	

10.	 Block	Produc@on	Bounty	and	Asymptote	Func@on	(if	any)	

11.	 Size	of	Bloom	Filters	used	for	byzan@ne	consensus	for	Candidate	Transac@ons	and	Segments.	

We	must	be	especially	careful	in	the	design	of	any	self-adjus@ng	(feedback)	parameters.	

	 Prevent	condi@ons	that	drive	a	parameter	to	a	limit,	or	unbounded	value.	

	 Prevent	condi@ons	that	allow	the	introduc@on	of	oscilla@ons.	

	 Prevent	condi@ons	that	allow	stepwise	changes	or	undamped	excursions.	

	 This	means:	Apply	Well-Designed	Control	System	Principles.  

Slán-Chain™ Architecture DRAFT Page � of �33 52 (c) 2018 Brian McMillin

	

Storage	and	Network	OperaQng	Parameters	

Certain	 parameters	 establish	 the	 guidelines	 for	 opera@on	 of	 the	 peer-to-peer	 Networking	 and	 the	
Distributed,	Redundant	Storage.	

1.	 Size	of	physical	Storage	and	Network	Blocks.	

2.	 Hash	Algorithm	for	Segment	iden@fica@on.	

3.	 Rate	of	Background	Replica@on	and	Audit.	

4.	 Number	of	Connec@ons	to	Peer	SNSPs.	

5.	 Size	of	Bloom	Filters	used	for	Storage	Announcements	and	Requests.	

These	parameters	must	not	limit	the	future	growth	of	the	Network	Bandwidth	or	Storage	Capacity. 

Slán-Chain™ Architecture DRAFT Page � of �34 52 (c) 2018 Brian McMillin

	

Searches, Single Instance Storage and Data Compression

Transac@ons	include	several	types	of	Data	Fields:	

	 Inputs	-	Payer’s	ID,	Amount,	Signature	

	 Scripts	-	Sequence	of	Transac@on	Rules	for	Valida@on	and	Dispersal	of	Funds	

	 Outputs	-	Recipient’s	ID	and	Amount	

	 Arbitrary	Data	-	Unique	Iden@fier	of	the	Hash	of	an	(unlimited	length)	block	of	Data	

each	of	which	may	consist	of:	

	 Iden@ty	Handles	-	Unique	Iden@fier	used	to	associate	Payers	and	Recipients	

	 Signatures	-	Cryptographic	verifica@on	that	the	Sender	approved	this	Amount	as	payment	

	 Values	-	Numeric	amount	of	value	with	no	predefined,	arbitrary	limits	to	scale	or	precision.	

	 Indices	-	Method	of	selec@ng	op@ons	or	selected	Data	as	input	to	a	Script	or	Contract	

	 Timestamps	-	Standardized	method	of	allowing	or	restric@ng	Transac@ons	to	certain	@mes	

Each	of	these	fields	may	contain		

	 Actual	Values	of	arbitrary	size	(number	of	bits),	and	

	 May	be	referenced	mul@ple	@mes	on	the	Blockchain	

We	need	a	design	that	assigns	a	handle	to	the	first	instance	of	the	value	when	it	occurs	on	the	chain,	
and	refers	to	the	value	using	the	handle	on	all	subsequent	uses.	

This	provides	an	inherent	form	of	data	compression.	Arbitrarily	large	data	values	are	reduced	to	the	size	
of	a	reference	handle.	Ideally,	the	size	of	a	handle	will	be	dynamic	and	grow	no	faster	than	the	size	of	
the	Blockchain	itself.	

Further,	each	instance	of	a	handle	may	be	stored	in	the	form	of	a	linked	list.	

This	allows	us	to	rapidly	locate	every	instance	of	a	par@cular	value	anywhere	on	the	chain.	

———	

The	handle	assignment	mechanism	with	its	first	instance	concept	implies	the	ability	to	rapidly	look	up	
any	data	value	in	order	to	determine	its	handle.	

The	rapid	lookup	is	accomplished	using	a	binary	search	of	a	specialized	B-tree	structure	based	on	the	
hashes	of	the	Actual	Values.		

This	works	because	the	order	of	the	Actual	Values	is	not	important.	We	need	only	the	ability	to	

	 1.	 Determine	the	existence	of	an	Actual	Value	in	the	system,	and	

	 2.	 Add	an	new	[Actual	Value,	Handle]	pair	to	the	system.	

Since	we	are	using	hashes	of	the	Actual	Values	we	can	expect	the	B-tree	to	remain	generally	level	as	it	
grows.	This	obviates	the	need	for	special	code	or	radical	opera@ons	on	the	tree.	

It	is	expected	that	full	copies	of	the	“current”	B-tree	will	be	periodically	appended	to	the	Slán-Chain™	in	
the	form	of	an	opera@onal	Transac@on.	This	will	allow	new	par@cipants	to	access	the	required	structure	
without	 needless	 storage	 queries.	 Par@cipants	 will	 build	 internal	 working	 B-trees	 based	 on	 changes	
aVer	this	snapshot	and	will	independently	verify	the	next	proposed	snapshot	Transac@on.  
Slán-Chain™ Architecture DRAFT Page � of �35 52 (c) 2018 Brian McMillin

	

“Colored Coins” or Create-Your-Own Token

Independent	 cryptocurrencies	 sharing	 the	 Slán-Chain™	 infrastructure.	 Analogy	 is	 poker	 chips	 in	 a	
casino.	Total	all	the	red	ones	together,	and	all	the	white	ones	together.	But	to	turn	red	ones	into	white	
ones	you	have	to	use	an	exchange.	Two	ques@ons	arise:	1)	How	long	does	it	take	to	“make	change”,	and	
2)	How	much	are	the	fees?	

Advantages	 of	 the	 Slán-Chain™	 include	 the	 sharing	 of	 the	 consensus	 servers,	 reliable	 networking,	
unlimited	storage,	rapid	Transac@ons	and	trusted	escrow.	

The	Slán-Chain™	technique	of	Transac@on	Approval	and	Balance	Lookup	can	be	used	for	Alt-Currencies.	

The	par@cular	Alt-Currency	is	iden@fied	in	the	Transac@on	and	verified	within	the	Script.	

We	define	an	inherent,	on-chain	Exchange	mechanism	with	other	Slán-Chain™	Alt-Currencies.		

The	Slán-Chain™	itself	acts	as	the	trusted	escrow	agent	for	the	seolement,	ensuring	that	both	par@es	
actually	possess	the	tokens	being	exchanged.	The	on-chain	escrow	is	a	varia@on	of	the	method	used	to	
ensure	that	the	Bonded	Proof-of-Stake	consensus	confirms	all	Slán-Chain™	Transac@ons.	

“Spot	prices”	are	established,	enforced	and	guaranteed	to	be	honest	by	the	Slán-Chain™	consensus.	

Since	we	must	be	able	to	pay	Transac@on	and	Connec@on	fees	 in	Slán-Coin™,	we	must	also	act	as	an	
Exchange	for	Colored-Coin	value	into	Slán-Coin™.	

Thus,	all	Slán-Chain™	Alt-Currencies	are	inherently	fungible	and	available	for	exchange.		

Exchange	 rates	 are	 established	 by	 actual	 Transac@ons	 that	 occur	 on	 the	 Slán-Chain™.	 No	 arbitrary	
valua@on	exists.		

It	may	be	desirable	to	establish	a	Slán-Chain™	fee	for	the	exchange	service	since	exchange	Transac@ons	
are	 slightly	 more	 complex	 to	 compute	 than	 simple	 Transac@ons.	 This	 should	 be	 a	 fixed	 fee	 per	
transac@on,	payable	in	Slán-Coin™,	and	appor@oned	to	Block	Producers.		

Colored	Coins	should	be	able	to	implement:	

	 1.	 Independent	defini@ons	of	“Mining”	to	control	infla@on,	etc.	

	 2.	 Allow	Dividends	for	holders-of-record.	

	 3.	 We	may	include	the	ability	to	do	splits	and	reverse-splits	for	more	convenient	valua@on.	

The	 problem	 with	 Ethereum’s	 (for	 example)	 implementa@on	 of	 Colored	 Coins	 (Tokens)	 is	 that	 the	
individual	 Coin	 ecosystems	 are	 totally	 isolated	 from	 each	 other	 and	 use	 the	 Blockchain	 ONLY	 to	
implement	their	 idea	of	Smart	Contracts	to	perform	Transac@ons	that	move	value	between	Accounts	
using	 the	 par@cular	 Colored	 Coin.	 	 This	 means	 that	 moving	 value	 between	 different	 types	 of	 Coin	
(different	 cryptocurrencies)	 requires	 the	 involvement	of	an	Exchange	 -	even	 though	all	 the	Coins	are	
already	on	the	Ethereum	blockchain.	These	Exchanges	will	implement	their	own	seolement	rules,	will	
establish	unknown,	unknowable	and	arbitrary	actual	exchange	rates,	will	make	no	use	of	the	Blockchain	
to	maintain	 integrity,	will	 collect	a	 commission	and	will	be	 subject	 to	 fraud.	As	 if	 all	 that	wasn’t	bad	
enough,	the	“totally	isolated	Colored	Coin”	concept	gets	violated	anyway,	because	you	must	have	some	
ETH	(from	somewhere)	in	order	to	pay	the	Gas	for	the	Transac@ons	involving	the	Colored	Coins	on	the	
chain.  
Slán-Chain™ Architecture DRAFT Page � of �36 52 (c) 2018 Brian McMillin

	

The Meaning of Currency

Many	of	the	terms	that	we	rou@nely	use	will	benefit	from	a	bit	of	historical	perspec@ve.	

Please	take	a	moment	and	enjoy	this	excerpt.	

“One	of	 the	English	was	using	a	 funny	word	yesterevening	—	 ‘currency.’	Do	
you	know	it?”		

“It	 is	the	quality	that	a	current	has.	They	speak	of	the	currency	of	the	River	
Thames,	 which	 is	 sluggish	 in	 most	 places,	 but	 violent	 when	 it	 passes	 under	
London	Bridge.	It	is	just	the	same	as	our	word	Umlauf	—	running	around.”		

“That	 is	what	 I	 supposed.	This	Englishman	kept	discoursing	of	currency	 in	a	
way	that	was	most	fraught	with	meaning,	and	I	thought	he	was	speaking	of	some	
river	or	drainage-ditch.	Finally	 I	collected	that	he	was	using	 it	as	a	synonym	for	
money.”		

“Money?”		

“I’ve	never	 felt	so	dense!	Fortunately,	Baron	von	Hacklheber	 is	visi@ng	from	
Leipzig.	He	was	familiar	with	the	term	—	or	quicker	to	decypher	it.	Later	I	spoke	
with	him	in	private	and	he	explained	all.”		

“What	an	odd	coinage.”		

“You	are	too	wioy	for	your	own	good,	girl.”		

“The	 Englishmen	 cannot	 get	 away	 from	 this	 topic.	 Their	 rela@onship	 to	
money	is	most	peculiar.”		

“It	 is	 because	 they	 have	 nothing	 but	 sheep,”	 Sophie	 explained.	 “You	must	
understand	this	if	you	are	to	be	their	Queen.	They	had	to	fight	Spain,	which	has	
all	of	the	gold	and	silver	 in	the	world.	Then	they	had	to	fight	France,	which	has	
every	other	 source	of	material	wealth	 that	 can	be	 imagined.	How	does	a	poor	
country	defeat	rich	ones?”		

“I	think	I	am	supposed	to	say	‘the	grace	of	God’	or	some	such	—”		

“If	you	please.	But	in	what	form	is	the	grace	of	God	manifested?	Did	piles	of	
gold	materialize	on	the	banks	of	the	Thames,	as	in	a	miracle?”		

“Of	course	not.”		

“Does	Sir	 Isaac	 turn	Cornish	@n	 into	gold	 in	an	alchemical	 laboratory	 in	 the	
Tower	of	London?”		

“Opinions	differ.	Leibniz	thinks	not.”		

“I	agree	with	Baron	von	Leibniz.	And	yet	all	the	gold	is	in	England!	It	is	dug	up	
from	 Portuguese	 and	 Spanish	 mines,	 but	 it	 flows,	 by	 some	 occult	 power	 of	
aorac@on,	to	the	Tower	of	London.”		

“Flows,”	Caroline	repeated,	“flows	like	a	current.”		

Slán-Chain™ Architecture DRAFT Page � of �37 52 (c) 2018 Brian McMillin

	
Sophie	nodded.	 “And	 the	 English	 have	 grown	 so	used	 to	 this	 that	 they	use	

‘currency’	 as	 a	 synonym	 for	 ‘money’	 as	 if	 no	 dis@nc@on	 need	 be	 observed	
between	them.”		

Caroline	 said,	 “Is	 this	 the	 answer	 to	 your	 ques@on	 —	 how	 does	 a	 poor	
country	defeat	rich	ones?”		

“Indeed.	The	answer	is,	not	by	acquiring	wealth,	in	the	sense	that	France	has	
it	—”		

“Meaning	vineyards,	farms,	peasants,	cows	—”		

“But	 rather	 to	play	 a	 sort	 of	 trick,	 and	 redefine	wealth	 to	mean	 something	
novel.”		

“Currency!”		

“Indeed.	Baron	von	Hacklheber	says	that	the	 idea	 is	not	wholly	new,	having	
been	 well	 understood	 by	 the	 Genoese,	 the	 Floren@nes,	 the	 Augsburgers,	 the	
Lyonnaise	for	many	genera@ons.	The	Dutch	built	a	modest	empire	on	it.	But	the	
English	—	having	no	other	choices	—	perfected	it.”		

“You	have	given	me	new	food	for	thought.”	

Neal	Stephenson.	The	System	of	the	World	(The	Baroque	Cycle	Book	3).	HarperCollins. 

Slán-Chain™ Architecture DRAFT Page � of �38 52 (c) 2018 Brian McMillin

	

Slán-Chain™ Bonded Auctions

Basic	Transac@ons	on	any	Blockchain	involve	a	transfer	of	coin	value	from	one	party	to	another.	

More	complex	Transac@ons	may	involve	mul@ple	senders	and/or	mul@ple	recipients.	

The	rules	for	appor@oning	the	funds	are	contained	in	the	Script	that	accompanies	each	Transac@on.	

Cryptocurrencies	also	require	a	mechanism	to	aucQon	a	transacQon	to	the	highest	or	lowest	bidder.	

Specifically,	we	wish	to	be	able	to	handle	these	cases:	

	 1.	 Seller	has	an	item	that	he	wishes	to	sell	to	the	highest	(unknown)	bidder	

	 2.	 Buyer	wishes	to	purchase	an	item	from		an	(unknown)	seller	for	the	lowest	price	

Unlike	simple	Transac@ons,	the	transfer	of	value	is	to	or	from	a	party	that	is	unknown	at	the	@me	of	the	
ini@al	offer.	There	must	be	a	trusted	agent	to	mediate	the	connec@on	between	these	par@es.	The	Slán-
Chain™	implements	the	necessary	protocol	to	manage	the	escrow	of	value	and	ensure	the	integrity		of	
the	ul@mate	transac@on.	

Essen@ally	there	are	three	steps:	

	 1.	 Post	 an	Offer	 to	 buy	 or	 sell.	 Describe	 the	 item,	 set	 a	 price	 range	 and	 a	 Closing	 @me.	
Offers	include	the	Public	Key	of	the	originator	(since	the	Transac@on	must	be	signed	by	the	sender).	

	 2.	 Post	 Bids.	 Each	 will	 refer	 to	 the	 ini@al	 offer	 and	 set	 a	 bid	 price	 and	 addi@onal	
informa@on.	 Bids	 are	 added	 to	 the	 Blockchain	 to	 provide	 a	 permanent,	 immutable	 record	 of	 the	
honesty	of	the	auc@on.	All	bid	prices	are	withdrawn	from	the	bidder’s	account	and	held	in	escrow	un@l	
the	close	of	the	Auc@on.	Mul@ple	bids	from	the	same	bidder	are	handled	by	the	Slán-Chain™	-	recent	
bids	“replace”	the	older	ones	and	the	escrow	is	computed	appropriately.	The	bonds	are	held	in	escrow	
for	all	bidders	un@l	the	close	of	the	auc@on.	

Bids	include	the	Public	Key	of	the	originator	(since	the	Transac@on	must	be	signed	by	the	sender).	The	
“addi@onal	informa@on”	can	take	the	form	of	public	or	private	text	messages.	This	allows	a	public	chat	
visible	 to	all	 Slán-Chain™	Observers,	or	private	messages	 (encrypted	with	 the	 recipient’s	Public	Key).	
Use	cases	include	sending	the	mailing	address	for	a	package,	for	example.	

	 3.	 Close	the	AucQon.	Slán-Chain™	seoles	the	Transac@on	and	returns	the	escrow	of	losers.	
The	auc@on	closes	immediately	when	a	bid	hits	the	upper	limit	specified	in	the	Offer.	The	first	Bid	that	
hits	the	limit	is	the	winner;	all	others	are	losers	and	their	escrow	is	returned.	If	the	Bid	never	reaches	
the	upper	(“Buy	it	Now”)	limit,	the	auc@on	closes	with	the	first	Transac@on	aVer	the	published	Closing	
@me.	

Bids	can	be	changed	or	withdrawn	at	any	@me	prior	 to	 the	close	of	 the	auc@on	by	simply	crea@ng	a	
new	transac@on	that	will	override	the	previous	one	from	the	specific	bidder.	The	Slán-Chain™	handles	
the	maintenance	of	the	correct	escrow	balance	based	on	the	current	bid.	

The	 auc@on	 itself	 can	 be	 withdrawn	 by	 the	 originator,	 prior	 to	 close,	 by	 pos@ng	 an	 overriding	
Transac@on.	The	Slán-Chain™	returns	the	escrow	balances	to	all	bidders.	

Slán-Chain™ Architecture DRAFT Page � of �39 52 (c) 2018 Brian McMillin

	

Using Slán-Chain™ Escrow for Bid-Ask Settlements

Two	anonymous	par@es	wish	to	reach	an	understanding	for	an	exchange	of	token	value.	

One	makes	an	offer	to	sell	in	the	form	of	a	Quan@ty	of	Tokens	(value)	and	a	range	of	Asking	prices.	

The	other	makes	an	offer	to	buy	in	the	form	of	a	Quan@ty	and	a	range	of	Bidding	prices.	

The	Bid	and	Ask	offers	may	be	made	 in	either	order,	are	 individual	Transac@ons	on	 the	Slán-Chain™,	
and	remain	viable	un@l	either	withdrawn	or	seoled.	

Every	Transac@on	involving	either	Bid	or	Ask	transfers	the	sender’s	Token	value	into	Escrow	on	the	Slán-
Chain™,	thus	ensuring	that	the	sender	actually	has	the	necessary	value	and	preven@ng	the	sender	from	
double-spending,	bidding	on	overlapping	offers,	or	fraudulently	promising	future	payments.	

Slán-Chain™ Architecture DRAFT Page � of �40 52 (c) 2018 Brian McMillin

	

Off-Chain Exchanges: Dangerous But Necessary

In	order	to	move	Value	on	to	and	off	of	the	Slán-Chain™	it	is	necessary	to	involve	a	trusted	third	party	
to	act	as	an	Exchange.	

For	example,	in	order	to	“Buy	one	USD	worth	of	Slán-Coin™”,	I	must:	

1.	 Find	a	trustworthy	en@ty	who	currently	owns	some	Slán-Coin™	and	would	like	some	USD.	

2.	 Nego@ate	an	Exchange	Rate	with	her	to	establish	how	many	Slán-Coin™s	I	will	receive.	

3.	 Send	her	my	$1	USD	by	some	(exis@ng)	banking	or	USD	funds	transfer	mechanism.	

4.	 Ensure	that	she	has	received	the	funds.	

5.	 Wait	while	she	creates	a	Slán-Chain™	transac@on	that	conveys	the	agreed	Slán-Coin™	to	me.	

The	problems	associated	with	this	are	many:	

1.	 Trust	vs.	Transparency	

	 	 Trust	that	the	quoted	Exchange	Rate	and	Fees	are	fair	and	equitable.	

	 	 Trust	that	the	Exchange	actually	has	the	promised	Slán-Coin™	available.	

	 	 Trust	that	the	Exchange	will	acknowledge	receipt	of	my	funds.	

	 	 Trust	that	the	Exchange	will	honor	the	nego@ated	Exchange	Rate.	

	 	 Trust	that	the	Slán-Coin™	will	be	paid	promptly.	

2.	 No	single-source	Audit	of	agreements	or	performance	

3.	 Incen@vizes	misbehavior	of	the	Exchange	since	there	is	no	penalty	for	simply	lying.	

4.	 Exchange	holdings	on	the	Blockchain	are	vulnerable	to	the	compromise	of	their	Private	Key.	

5.	 Exchange	Transac@ons	are	monitored	and	taxed.	

There	is	a	Big	Difference	Between	

“We	Won’t	Cheat	You”	
and	

“We	Can’t	Cheat	You”	

Slán-Chain™ Architecture DRAFT Page � of �41 52 (c) 2018 Brian McMillin

	

Transaction Frequency on the Slán-Chain™

The	 Slán-Chain™	 requires	 an	 adaptable,	 self-regula@ng	method	 to	 define	 the	windows	 for	 accep@ng	
Candidate	Transac@ons	and	pos@ng	Produced	Blocks	to	the	chain.	

It	 is	 expected	 that	 the	 processing	 and	 network	 communica@on	 speed	 will	 increase	 with	 @me;	
conversely	the	number	of	Transac@ons	targe@ng	the	Blockchain	will	also	increase.	

Keeping	these	opposing	forces	in	balance	and	ensuring	that	new	Block	Producers	can	join	the	network	
with	reasonable	expecta@ons	of	success	will	require	a	built-in	feedback	system.	

As	with	all	aspects	of	the	Slán-Chain™,	this	feedback	mechanism	must	rely	only	on	on-chain	data	and	
must	be	able	to	be	unambiguously	evaluated	by	all	par@cipants.	

The	use	of	Timestamps	included	with	the	Signature	of	every	Block	Produced	enables	all	par@cipants	to	
determine	 the	 amount	 of	 @me	 that	 it	 took	 for	 the	 Candidate	 Transac@ons	 to	 propagate	 to	 the	
Producers	and	the	amount	of	@me	it	took	the	Producers	to	verify	and	format	the	par@cular	Block.	

Since	we	always	have	mul@ple	Block	Producers	 reaching	a	consensus	concerning	each	block,	we	also	
have	a	representa@ve	sampling	of	these	combined	Produc@on	Delays.	

This	representa@ve	sampling	allows	for	the	computa@on	of	the	Mean	Delay	and	Standard	Devia@on	for	
each	block,	which	can	be	correlated	with	the	size	of	each	block.	

Our	goal	is	to	automa@cally	adjust	the	Candidate	Transac@on	Acceptance	Windows	and	the	target	Block	
Produc@on	rate	so	that	we	achieve	the	fastest	performance	based	on	an	average	of	the	produc@on	rate	
of	the	last	several	Blocks.	

The	Window-size	adjustments	are	intended	to	allow	for	the	(hopefully	rare)	case	where	a	network	or	
server	failure	causes	Block	Produc@on	to	be	delayed	or	not	Produced	at	all.	

The	 important	 thing	 is	 to	achieve	a	generally	 consistent	Block	Produc@on	rate	given	varying	network	
speed,	computa@on	speed	and	Candidate	Transac@on	rate.	

In	 addi@on,	 the	 ability	 to	 unambiguously	 assess	 Slán-Chain™	 and	 Network	 performance	 allows	 new	
Block	Producers	to	“play	along”	with	the	network	-	opera@ng	in	a	shadow	mode	-	for	a	period	of	@me.	
This	allows	them	to	develop	confidence	 in	their	compu@ng	and	networking	reliability	prior	to	puvng	
up	a	Bond	to	become	a	Block	Producer.	

Bitcoin	is	only	able	to	adjust	Work	Requirements	to	achieve	an	(arbitrary)	one	block	per	600	seconds.	

The	Slán-Chain™	 is	able	 to	op@mize	Produc@on	Rate	 to	allow	for	ever-increasing	Network	Speed	and	
Transac@on	Volume.	

Slán-Chain™ Architecture DRAFT Page � of �42 52 (c) 2018 Brian McMillin

	

Slán-Chain™ Escrow Mechanism

The	Slán-Chain™	Escrow	Mechanism	is	a	specialized	account	that	temporarily	holds	value	in	the	form	of	
cryptocurrency	across	mul@ple	Transac@ons.	

The	most	important	thing	about	Escrow	is	that	there	is	No	Private	Key	associated	with	it.	

All	other	“Accounts”	have	a	public	address	that	receives	value	and	a	Private	Key	for	spending	value.	

The	 rules	 of	 the	 Slán-Chain™	 and	 the	 consensus	 of	 Block	 Producers	 guarantee	 the	 integrity	 of	 the	
Escrow.	

The	Escrow	Mechanism	allows	users	to	safely	and	securely	put	up	a	Bond	with	the	full	expecta@on	that	
an	unknown	third	party	will	perform	as	expected	or	the	Bind	will	be	refunded.	

The	Trusted	En@ty	is	the	Slán-Chain™	itself	—	not	a	third	party.	

The	 Escrow	 Mechanism	 is	 the	 core	 of	 the	 opera@on	 of	 the	 Slán-Chain™	 and	 is	 required	 to	 be	
incorrup@ble	in	order	for	the	Bonded	Proof-of-Stake	to	ensure	consensus	among	Block	Producers.	

We	leverage	the	incorrup@bility	of	the	Escrow	system	to	enable:	

	 1.	 Trusted	Auc@ons.	

	 2.	 Colored	Coin	Exchanges.	

The	lack	of	any	cryptographic	key	associated	with	the	Escrow	func@on	means	that	the	Slán-Chain™	can	
be	completely	decentralized	and	has	no	single-point	weakness.	

By	NOT	requiring	private	keys	to	sign	Escrow	payments	we	are	able	to	

	 1.	 ensure	 that	 all	 Block	 Producers	 and	 Observers	 are	 able	 to	 verify	 the	 correctness	 of	
Transac@ons	involving	Escrow	payments.	

	 2.	 eliminate	 the	 vulnerabili@es	 that	would	 exist	with	 Private	 Key	Management,	 including		
delays,	distribu@on,	protec@on,	revoca@on.	

	 3.	 ensure	that	all	escrowed	funds	are	either	legi@mately	spent	or	refunded	at	a	par@cular	
@me,	preven@ng	funds	from	being	“lost	in	limbo”.	

	 4.	 ensure	transparency	and	audit-ability	of	all	Transac@ons.	

Slán-Chain™ Architecture DRAFT Page � of �43 52 (c) 2018 Brian McMillin

	

Slán-Chain™ Value-Added Services

There	 are	many	 opportuni@es	 for	 off-chain	 services	 that	may	 generate	 revenue	 independent	 of	 the	
Slán-Chain™	 itself.	 Thus,	 the	 Slán-Chain™	 is	 a	 basic	 enabling	 technology	 for	 previously	 difficult	 or	
impossible	services.	

The	Slán-Chain™	provides	a	secure,	trusted	and	transparent	founda@on	for	these	new	services.	

1.	 Transac@on	Gateway	and	Wallet	Support	

2.	 Exchanges	

3.	 Smart	Contract	Judiciary	

4.	 Auc@on	Houses	

5.	 Data	Archives	and	Searches	

6.	 AI	and	Deep	Learning	

7.	 Universal	ID	and	Protected	Personal	Informa@on	

8.	 Bonded	Proof-of-Stake	Pools	and	on-chain	interest-bearing	or	dividend-yielding	investments	

Slán-Chain™ Architecture DRAFT Page � of �44 52 (c) 2018 Brian McMillin

	

Creation of Colored Coins

Colored	 Coins	 (Alt-Tokens)	 on	 the	 Slán-Chain™	 are	 created	 with	 specialized	 versions	 of	 Bonded	
Exchange	Transac@ons.	

1.	 The	 creator	 builds	 a	 Transac@on	 that	 describes	 the	 new	 Coin	 by	 giving	 it	 a	 text	 name	 and	
descrip@on,	and	an	ini@al	quan@ty.	The	Slán-Chain™	will	assign	a	unique	handle	(cryptographic	hash)	by	
which	the	Coin	will	be	referenced	in	all	 future	Transac@ons.	The	ini@al	quan@ty	of	newly	minted	Coin	
will	be	assigned	to	the	ID	of	the	creator.	

2.	 The	creator	may	use	any	normal	(Unilateral)	Transac@ons	to	pay	others	with	this	new	Coin.	

3.	 Anyone	possessing	this	new	Coin	may	also	use	any	normal	(Unilateral)	transac@on	to	pay	others	
with	this	new	Coin.	

4.	 Anyone	possessing	this	new	Coin	may	use	Bid-Ask	(Exchange)	Transac@ons	to	convert	this	new	
Coin	to	other	Colored	Coins,	or	to	Slán-Coin™.	

5.	 The	creator	may	build	a	new	crea@on	Transac@on	referencing	the	handle	of	the	Coin.	The	Slán-
Chain™	will	verify	the	signature	of	the	creator	and	ensure	that	the	ID	matches	the	original	creator	of	
the	par@cular	Coin.	Freshly	minted	Coin	in	the	specified	quan@ty	will	be	added	to	the	creator’s	ID.	This	
is	the	equivalent	of	a	mining	opera@on	in	other	cryptocurrencies	and	requires	the	verified	signature	of	
the	original	creator.	

6.	 The	creator	may	“LOCK”	the	new	Coin	by	signing	a	Transac@on	that	mints	exactly	zero	new	Coin.	
This	 LOCK	 will	 prevent	 any	 addi@onal	 Coin	 from	 ever	 being	 minted.	 Specifically,	 the	 signature	
verifica@on	phase	described	in	(5.)	above	will	cease	to	honor	any	signatures.	This	means	that	the	new	
Coin	 can	 never	 be	 devalued	 by	 its	 creator	 and	 that	 holders	 are	 protected	 even	 in	 the	 case	 that	 the	
creator’s	Private	Key	is	compromised.	

The	value	of	Colored	Coins	 is	established	only	by	market	(Exchange)	forces;	they	have	no	 inherent	or	
fixed	value.	This	means	that	Colored	Coins	may	not	be	used	to	pay	Transac@on	fees	on	the	Slán-Chain™.		

All	Transac@ons	on	the	Slán-Chain™	require	fee	payment	in	Slán-Coin™,	in	addi@on	to	whatever	Colored	
Coin	value	is	transferred.	

This	mechanism	 ensures	 that	 Colored	 Coins	 implemented	 on	 the	 Slán-Chain™	 incur	 as	 liitle	 cost	 as	
possible	and	are	secured	by	the	full	integrity	of	the	Slán-Chain™	itself.	

Because	 Coin	 crea@on,	 transfer	 and	 exchange	 is	 easy	 and	 inexpensive	 it	 will	 be	 convenient	 for	
applica@ons	such	as	managing	company	stock.	

Care	should	be	exercised	to	ensure	that	Transac@ons	are	directed	to	the	correct	handle	for	the	desired	
Coin.	 Handle	 lookups	 using	 name	 and	 descrip@on	 suffer	 from	 the	 same	 problem	 that	 “look-alike	
domains”	have	when	using	the	Internet	Domain	Name	Servers.		

The	Slán-Chain™	will	verify	 that	 the	Coins	referred	to	 in	an	Exchange	Transac@on	exist	and	that	both	
par@es	 have	 the	 claimed	 quan@ty,	 but	 the	 system	 cannot	 verify	 that	 these	 Coins	 are	 the	 ones	 you	
intended	to	acquire.				Caveat	Emptor.	

Slán-Chain™ Architecture DRAFT Page � of �45 52 (c) 2018 Brian McMillin

	

Slán-Chain™ Transaction Types

Every	 Transac@on	 supported	by	 the	 Slán-Chain™	must	 be	 able	 to	 be	understood	 and	 verified	by	 the	
servers	 that	 add	 it	 to	 a	 par@cular	 Block.	 The	 Transac@ons	must	 then	 be	 able	 to	 be	 searched	 in	 an	
expedi@ous	manner	to	allow	future	Transac@ons	to	make	use	of	the	results.	Furthermore,	Observers	of	
the	blockchain	must	be	able	to	recognize	and	understand	the	meaning	of	these	Transac@ons.	

We	 design	 a	 very	 limited	 number	 of	 Transac@on	 Types	 that	 support	 the	 intended	 uses	 of	 the	 Slán-
Chain™	and	provide	a	trusted	founda@on	for	new	or	unforeseen	applica@ons.	

1.	 The	 Genesis	 TransacQon.	 This	 Transac@on	 allocates	 previously	 non-existent	 Slán-Coin™	 to	 a	
large	number	of	different	IDs.	There	is	only	one	Genesis	Transac@on.	It	is	necessary	to	establish	a	large	
number	 of	 IDs	 with	 sufficient	 Slán-Coin™	 to	 be	 able	 to	 post	 the	 Bonds	 required	 to	 implement	 the	
Bonded	Proof-of-Stake	consensus	mechanism	that	is	the	founda@on	of	the	Slán-Chain™.	

2.	 Block	 ProducQon	 Bid	 TransacQon.	 A	 Produc@on	 Bid	 is	 an	 offer	 for	 the	 originator	 to	 act	 as	 a	
Bonded	Block	Producer	for	a	future	Block	on	the	Slán-Chain™.		This	implements	Bonded	Proof-of-Stake.	

3.	 Payment	TransacQons.	A	payment	Transac@on	verifies	the	Sender	 (who	signs	the	Transac@on)	
has	a	sufficient	balance	and	transfers	the	specified	amount	to	one	or	more	Recipients.	Recipient	IDs	are	
not	verified	and	do	not	need	 to	exist	previously.	 In	order	 to	 spend	 the	 funds	 received,	 the	Recipient	
must	have	the	ability	to	cryptographically	sign	a	Transac@on	with	the	matching	ID.		

Therefore,	care	should	be	exercised	to	ensure	the	validity	of	the	IDs.	Such	valida@on	is	not	the	province	
of	the	Slán-Chain™	and	incorrect	usage	may	result	in	the	permanent	loss	of	value.	

4.	 AucQon	 TransacQons.	 A	 payment	 to	 or	 from	 a	 Transac@on	Originator	 that	 is	matched	with	 a	
previously	 unknown	 other	 party.	 Auc@on	 Transac@ons	 establish	 the	 descrip@on	 and	 intent	 of	 the	
Auc@on,	or	withdraw	the	Auc@on	from	the	Slán-Chain™.		

5.	 Bid	TransacQons.	A	Bid	Transac@on	establishes	the	legi@macy	of	the	Bidder	and	the	value	of	her	
Bid.	 The	 Bid	 value	 is	 held	 in	 escrow	 by	 the	 Slán-Chain™	 un@l	 the	 bid	 is	 revised,	 withdrawn,	 or	 the	
auc@on	ends.	

6.	 Coin	 CreaQon	 TransacQons.	 Coin	 Crea@on	 consists	 of	 establishing	 a	 Name,	 Descrip@on,	
Quan@ty,	 Handle	 and	 Owner	 of	 a	 new	 Alt-Coin.	 The	 Owner	 of	 the	 new	 cryptocurrency	 (Coin)	 may	
create	more	 (min@ng)	 using	 addi@onal	 Crea@on	 Transac@ons,	 or	may	 permanently	 LOCK	 the	 Coin	 to	
prevent	any	possibility	of	more	of	that	Coin	ever	being	created	on	the	Slán-Chain™.	

7.	 Exchange	TransacQons.	An	Exchange	Transac@on	offers	to	exchange	a	quan@ty	of	one	Coin	for	a	
quan@ty	of	another	Coin.	The	Slán-Chain™	matches	previous	or	future	offers	and	ensures	the	rapid,	fair	
and	secure	seolement	of	the	Transac@on.	Exchange	Transac@ons	that	have	not	seoled	may	be	revised	
or	withdrawn	by	their	Originators.	The	Slán-Chain™	ensures	the	existence	of	sufficient	funds	from	both	
par@es	and	holds	the	funds	in	escrow	to	prevent	any	possibility	of	double	spending.	

8.	 Data	TransacQons.	All	Transac@ons	may	have	an	(effec@vely	unlimited)	amount	of	auxiliary	data	
stored	with	them.	Typically,	this	may	simply	be	comparable	to	the	MEMO	field	on	a	check,	or	document	
images	for	future	reference.	This	auxiliary	data	may	be	encrypted,	or	it	may	be	expressly	designed	to	be	
searchable.	 In	any	case	 the	 fees	paid	 to	 the	Slán-Chain™	by	 the	originator	of	 the	Transac@on	will	be	
based	on	the	size	of	 the	Transac@on.	Large	amounts	of	auxiliary	data	will	 therefore	 incur	 larger	 fees.	
Some	Transac@ons	will	be	intended	only	to	add	the	immutable	record	of	the	auxiliary	data	to	the	Slán-
Chain™.	 These	are	Data	Transac@ons,	 and	are	unique	 in	 that	 they	 specify	no	Recipients	or	 Script	 for	
distribu@ng	Coin	value.  
Slán-Chain™ Architecture DRAFT Page � of �46 52 (c) 2018 Brian McMillin

	

Slán-Chain™ Escrow Payments

The	Slán-Chain™	Escrow	mechanism	is	used	to	support	several	features	that	require	a	Trusted	Agent.	

1.	 Bonded	Proof-of-Stake	that	enables	the	consensus	mechanism	for	Block	Produc@on.	

2.	 Payment	for	the	Block	Producers	that	verify	and	organize	Transac@ons	on	the	blockchain.	

3.	 Payment	for	perpetual	Storage	and	reliable	Network	connec@ons	via	an	Annuity.	

4.	 Auc@on	and	Exchange	services	where	the	Buyer	and	Seller	are	Verified	but	Anonymous.	

Each	of	these	escrow-related	Transac@ons	begins	with	an	explicit,	signed	payment	of	a	par@cular	Coin	
amount	 into	 the	 Slán-Chain™	 escrow	 account.	 The	 value	 is	 held	 un@l	 one	 or	 more	 complementary	
Transac@ons	require	payment	from	Escrow.		

The	 important	thing	here	 is	 that	payments	FROM	escrow	are	authen@cated	by	the	Slán-Chain™	rules	
themselves,	verified	by	Block	Producer	consensus	and	added	as	the	last	item	to	the	current	Block	as	an	
unsigned	Escrow	Payment	Transac@on.	 I.e.,	 the	Signature	 that	validates	 the	Escrow	Payment	 is	not	a	
signature	on	the	Transac@on	itself	but	rather	the	verified	Signature	of	the	Block	Producer	on	the	en@re	
Block.	

The	rules	for	construc@ng	a	Block	-	including	the	verifica@on	of	Candidate	Transac@ons,	the	ordering	of	
Transac@ons	in	the	Block	and	the	crea@on	of	the	Escrow	Payment	Transac@on	-	are	all	determinis@c	and	
designed	 to	 ensure	 that	 all	 Block	 Producers	 and	 Observers	 will	 independently	 generate	 the	 same	
results	and	therefore	the	same	Block	Hash.	

This	 consensus	 among	Producers	on	 the	 forma@on	of	 the	next	Block	 is	 the	 feature	 that	 ensures	 the	
integrity	of	the	Slán-Chain™.	

Slán-Chain™ Architecture DRAFT Page � of �47 52 (c) 2018 Brian McMillin

	

Concerning Stalled Block Production

Under	normal	opera@ng	condi@ons	a	 large	number	of	 stakeholders	bid	 for	 the	 right	become	a	Block	
Producer.	From	each	auc@on,	several	of	these	bidders	will	be	deemed	winners	and	assigned	to	produce	
a	par@cular	 future	Block.	These	Bonded	Producer	auc@ons	occur	con@nuously	and	ensure	 that	 there	
are	a	number	of	Bonded	Block	Producers	assigned	to	every	Block.		

As	long	as	a	quorum	of	Bonded	Block	Producers	correctly	generate	iden@cal	Blocks,	the	system	runs	as	
intended.	The	mul@ple	Producers	are	referred	to	as	ommers.	One	ommer	 is	determinis@cally	selected	
as	the	one	which	will	be	the	“official”	Next	Block	on	the	Slán-Chain™	and	is	awarded	the	highest	Block	
payout.	The	other	ommers	are	rewarded	with	lesser	payments.	

Block	Produc@on	can	stall	if	a	quorum	of	Block	Producers	o	not	agree	on	a	par@cular	Block.	

This	 situa@on	can	occur	 if	 there	 is	a	par@cularly	 sharp	 increase	 in	Transac@on	volume	or	Transac@on	
size	 that	 exceeds	 the	 ability	 of	 the	 network	 to	 reach	 the	 necessary	 Producers	 within	 the	 allocated	
window.	

Widespread	 network	 outages	 or	 par@@oning	 of	 the	 network	 into	 subsets	with	 insufficient	 Producers	
online	can	also	cause	stalls.	

Correc@ng	Block	Produc@on	stalls	is	handled	by	a	retry	mechanism.	

Specifically,	 the	 Block	 Produc@on	 window	 is	 reopened.	 This	 allows	 all	 Block	 Producers	 to	 accept	
Candidate	Transac@ons	that	might	not	have	arrived	in	@me	and	caused	Produc@on	discrepancies.	The	
width	of	the	opera@ng	windows	is	increased	to	help	prevent	repeated	stalls	due	to	traffic	peaks.	

By	establishing	dynamically	adjustable	windows	based	on	network	capacity,	and	an	adjustable	number	
of	 Bonded	Producer	Auc@on	winners,	 and	 an	 adjustable	 required	quorum	of	ommers,	 it	 is	 expected	
that	the	Slán-Chain™	will	be	 immune	to	chain	forks	or	takeover	aoacks	 involving	 less	that	half	of	the	
available	Proof-of-Stake	Bondholders.	

Slán-Chain™ Architecture DRAFT Page � of �48 52 (c) 2018 Brian McMillin

	

Blockchain Construction

Candidate	 Transac@ons	 are	 presented	 from	 outside	 users	 and	 ini@ally	 Verified	 by	 a	 Storage	 and	
Network	 Service	 Provider	 (SNSP).	 Candidate	 Transac@ons	 always	 include	 the	 number	 of	 the	 Target	
Block	 intended	 to	 contain	 the	 Transac@on.	 The	 ini@al	 Verifica@on	 ensures	 the	 existence	 and	 current	
accessibility	of	all	the	inputs	(including	currency	amounts)	required	by	the	Transac@on.	The	SNSP	also	
ensures	 that	 all	 items	 required	 for	 other	 SNSPs	 to	 successfully	 Verify	 the	 Candidate	 Transac@on	 are	
available	during	the	processing	window	for	the	Target	Block	number.	

Candidate	Transac@ons	are	iden@fied	by	their	Hashes	and	sent	to	all	networked	SNSPs.	

SNSPs	 sort	 Candidate	 Transac@ons	 into	 Target	 Blocks	 ordered	 by	 their	 Hashes.	 This	 is	 the	 first	 step	
toward	building	a	Candidate	Block.	

AVer	 the	close	of	 the	window	for	 the	new	Block,	 the	SNSPs	reevaluate	 the	Transac@ons	 in	 the	order	
that	they	will	appear	in	the	Block.	The	valida@on	at	this	point	will	be	exhaus@ve	and	Transac@ons	may	
fail	 -	 for	 example,	 due	 to	 double-spending	 by	 mul@ple	 Transac@ons	 within	 this	 Block.	 Candidate	
Transac@ons	that	fail	to	verify	at	this	point	are	simply	deleted	from	the	Block.	Failed	Transac@ons	will	
have	to	be	resubmioed	by	their	origina@ng	user	through	the	full	process.	

As	 the	 Candidate	 Transac@ons	 are	 Verified,	 the	 SNSP	 creates	 an	 ordered	 list	 of	 Escrow	 Payment	
Transac@ons	 required	 by	 the	 Transac@ons	 within	 the	 Block.	 These	 Escrow-related	 Transac@ons	 are	
appended	to	the	new	Block.	The	Hash	of	the	completed	Block	is	used	to	iden@fy	it	as	a	Block	Candidate.	

Block	Producers	use	the	Block	Candidate	Hash	and	apply	their	ID	and	Signature	to	create	a	Candidate	
Block.	It	is	these	Signed	Block	Hashes	that	are	shared	among	SNSPs	and	are	used	to	establish	consensus	
among	Block	Producers	concerning	the	legi@macy	of	the	Block	Candidates.	

Slán-Chain™ Architecture DRAFT Page � of �49 52 (c) 2018 Brian McMillin

	

Data-Store Construction

The	Slán-Chain™	Data-Store	ensures	 that	 the	data	elements	used	 repeatedly	on	 the	Blockchain	need	
only	reside	at	a	single	loca@on,	and	be	stored	only	once,	within	the	Slán-Chain™	address	space.		

There	are	two	fundamental	requirements	for	dealing	with	Blockchain	data:	

	 1.	 Determining	if	a	par@cular	data	item	is	already	part	of	the	Blockchain,	and	

	 2.	 Finding	all	references	to	the	individual	item.	

These	 are	 especially	 important	 as	 we	 envision	 the	 need	 to	 find	 infrequently	 used	 items	 within	 a	
poten@ally	unlimited	amount	of	Blockchain	data.	

The	 “single	 loca@on”	 concept	has	 the	added	advantage	 that	a	 short	Handle	may	be	used	 to	 refer	 to	
otherwise	large	blocks	of	data.	Examples	include	IDs	and	Hashes,	but	not	Signatures.	

The	 second	 requirement	 is	 easily	 handled:	 By	 referring	 to	 data	 elements	 by	 their	 Handles	 we	 also	
create	the	ability	to	form	linked	lists	of	references	to	those	Handles.	These	linked	lists	allow	very	rapid,	
incorrup@ble	searches	for	all	uses	of	a	par@cular	ID.		

The	first	requirement	is	more	difficult,	as	it	involves	both	looking	up	a	par@cular	data	item	to	determine	
its	 existence	 within	 the	 Blockchain	 but	 also	 determining	 its	 handle.	 This	 is	 accomplished	 using	 a	
specialized	form	of	binary	tree,	or	B-Tree.	Using	a	B-tree	structure	ensures	that	any	desired	item	can	be	
located	 with	 a	 minimal	 number	 of	 accesses	 to	 the	 Data-Store	 and	 that	 that	 number	 will	 scale	
manageably	as	the	size	of	the	Data-Store	grows	into	the	future.	Of	par@cular	interest	is	the	fact	that	the	
percentage	of	the	B-Tree	required	to	be	accessible	within	the	memory	of	any	individual	SNSP	will	shrink	
with	@me	and	not	place	undue	burden	on	these	Providers.	

Another	interes@ng	observa@on	concerning	the	use	of	a	B-Tree	to	lookup	Hashes	is	that	the	inherently	
random	nature	of	Hashes	ensures	that	the	B-Tree	will	remain	generally	level	-	i.e.,	the	worst-case	depth	
of	any	branch	will	be	essen@ally	 the	 same	 throughout	 the	 tree.	This	means	 that	no	 special	 soVware	
considera@ons	 will	 be	 needed	 to	 perform	 leveling	 opera@ons	 and	 that	 the	 access	 speed	 and	
performance	of	the	B-Tree	will	be	sta@s@cally	predictable	into	the	future.	

Further,	 the	 vast	majority	 of	 nodes	within	 the	 B-Tree	will	 remain	 unchanged	 once	 they	 are	 created.	
Changes	to	the	tree	structure	required	by	the	con@nuous	addi@on	of	new	data	elements	will	affect	an	
ever-decreasing	 percentage	 of	 the	 en@re	 tree.	 In	 keeping	 with	 the	 philosophy	 of	 all	 Blockchain	
technologies	only	the	updated	por@ons	of	the	B-Tree	need	be	added	to	the	Data-Store.	

It	is	necessary	to	have	a	table	that	can	be	used	to	find	the	most	recent	reference	to	a	par@cular	Handle	
within	the	Blockchain.	This	allows	the	linked	list	of	references	to	be	traced	in	its	en@rety.	The	size	of	this	
table	will	correspond	to	the	total	number	of	Handles	on	the	Blockchain,	thus	it	grows	linearly	with	the	
size	of	the	Blockchain.		

As	with	all	of	these	structures,	the	“working	set”	or	por@on	of	the	Data-Store	that	must	be	held	by	any	
SNSP	 at	 any	 given	 @me	 shrinks	 with	 @me.	 Furthermore,	 the	 shared	 produc@on	 and	 consensus	
mechanisms	 required	 by	 the	 Slán-Chain™	 ensure	 that	 the	 ac@ve	 par@cipants	 will	 share	 a	 similar	
working	set	and	can	expect	to	be	able	to	ask	each	other	for	elements	that	they	might	not	have	within	
their	own	local	store.	

In	order	to	facilitate	new	SNSP	par@cipants	and	Observers	rapid	congruence	with	the	Slán-Chain™	it	will	
be	 advisable	 to	 preiodically	 post	 complete	 copies	 of	 the	B-Tree	 and	Handle	 Table	 to	 the	Data-Store.	
Implemented	correctly,	this	will	result	in	only	the	recent	changes	being	posted	to	the	physical	Store. 
Slán-Chain™ Architecture DRAFT Page � of �50 52 (c) 2018 Brian McMillin

	

Statistical Sharding

Previous	sec@ons	have	described	the	crea@on	of	Blocks	on	the	Slán-Chain™,	the	single-instance	storage	
of	data	elements	and	searching	for	occurrences	of	those	elements.	This	sec@on	describes	the	physical	
storage	of	 the	 resul@ng	Data-Store	 and	 the	 Segmenta@on	 that	 allows	distributed,	 redundant	 storage	
and	peer-to-per	networking	access	to	the	Slán-Chain™.	

The	most	important	feature	of	any	Blockchain	and	the	Slán-Chain™	Data-Store	in	par@cular	is	that	it	is	
“Append	Only”.	That	is,	any	data	wrioen	to	the	Data-Store	is	indelible	and	will	never	change.	New	data	
can	be	added,	possibly	upda@ng	items	with	a	new	“current	value”,	but	all	previous	values	will	remain	in	
the	Data-Store	and	available	for	inspec@on	as	required.	

This	“write-once”	property	means	that	the	Data-Store	can	be	wrioen	to	a	series	of	Segments	and	that,	
once	wrioen,	each	Segment	will	remain	unchanged	forever.	The	Slán-Chain™	defines	a	fixed	Segment	
size	and	uses	this	as	the	basic	unit	of	permanent	Storage	and	of	Network	communica@on.	In	addi@on,	
each	 Segment	 is	 cryptographically	 Hashed	 to	 assign	 a	 unique	 Segment	 Name.	 The	 use	 of	 hashing	
ensures	that	any	Segment,	requested	by	Segment	Name,	cannot	be	forged	or	otherwise	corrupted.	

Several	specialized	Segments	are	added	to	the	physical	implementa@on	of	the	Slán-Chain™	Store.	

	 1.	 Index	Segments	-	contain	a	list	of	Logical	Base	Addresses	and	Segment	Names	to	allow	
loca@ng	the	Segment	containing	any	desired	por@on	of	the	Slán-Chain™	

	 2.	 Forward	Error	Correc@on	(FEC)	Segments	-	contain	redundant	bits	to	allow	recrea@on	of	
missing	or	corrupted	Segments.	

In	some	distributed	storage	systems	breaking	data	into	chunks	such	as	this	 is	referred	to	as	Sharding;	
the	Slán-Chain™	uses	the	term	Segmenta@on.	

FEC	 Segments	 are	 inserted	 periodically	 as	 the	 Data-Store	 grows.	 FEC	 Segments	 provide	 overlapping	
protec@on	 to	previously	added	Segments	such	 that	any	Segment	can	be	 recreated	even	 in	 the	event	
that	mul@ple	nearby	Segments	are	unavailable.	This	Error	Correc@on	capability	ensures	that	it	is	never	
necessary	to	be	able	to	retrieve	a	specific	Segment	-	any	Segment	can	be	rebuilt	given	@me	to	access	
adjacent	Segments.	

Index	Segments	are	hierarchical	in	nature.	This	allows	a	tree	of	interlinked	Index	Segments	to	provide	
the	resources	to	find	the	Name	of	the	Segment	containing	any	Logical	Address	on	the	Slán-Chain™.	

The	most	recently	created	Index	Segments	contain	the	Logical	Addresses	and	Names	of	the	most	recent		
Segments	added	 to	 the	Data-Store.	This	has	 the	effect	of	allowing	any	Observer	or	Par@cipant	 to	be	
able	 to	 gain	 access	 to	 the	 Slán-Chain™	 from	 scratch	 by	 simply	 reques@ng	 the	 most	 recent	 Index	
Segment.	This	Root	Request	 is	a	 fundamental	capability	of	all	Storage	and	Network	Service	Providers	
(SNSPs)	 and	 is	 provided	 in	 their	 connec@on	 announcement	 and	 authen@ca@on	 protocol.	 Receiving	
consistent	 announcements	 from	 mul@ple	 SNSPs	 ensures	 that	 customers	 (users)	 only	 connect	 to	
authen@c	Providers.	

As	@me	progresses	the	number	of	Segments	stored	on	the	hardware	of	any	par@cular	SNSP	will	exceed	
to	capacity	of	that	server.	The	choice	of	which	Segments	to	discard	will	be	made	on	a	Sta@s@cal	basis.	
The	SNSP	will	use	one	or	more	randomly	selected	Bloom	Filters	to	choose	which	Segments	to	retain.	
This	technique	ensures	that	different	peer-to-peer	servers	and	connec@ons	between	them	will	be	likely	
to	possess	different	subsets	of	the	en@re	Data-Store.	 In	addi@on,	each	SNSP	can	publish	to	the	peers	
the	Bloom	Filters	it	is	using.	Thus,	when	a	request	for	a	par@cular	Segment	Name	is	received,	each	SNSP	
can	make	an	“educated	guess”	as	to	which	Network	Connec@on	is	most	likely	to	yield	the	Segment. 
Slán-Chain™ Architecture DRAFT Page � of �51 52 (c) 2018 Brian McMillin

	

Slán-Coin™ Exchange Rules

The	 Slán-Chain™	provides	 inherent,	 on-chain	 support	 for	 cryptocurrency	 Exchange	 among	 all	 Tokens	
implemented	 on	 the	 Slán-Chain™.	 This	 is	 accomplished	 by	 making	 use	 of	 the	 Slán-Chain™	 Escrow	
mechanism.	 Escrow	 Transac@ons	 are	 generally	 more	 secure	 than	 any	 other	 Transac@ons	 on	 the	
Blockchain	 since	 they	 are	 based	 on	 the	 consensus	mechanism	of	 the	 Slán-Chain™	 itself	 and	 are	 not	
subject	to	the	possibility	of	forged	signatures	or	the	loss	of	Private	Cryptographic	Keys.	

Slán-Chain™	 Exchanges	 allow	 a	 Bid-Ask	 type	 auc@on	 of	 one	 cryptocurrency	 for	 another.	 This	 may	
include	Slán-Coin™	or	any	other	on-chain	token.	

The	holder	of	Coin	A	may	offer	to	sell		quan@ty	QA	coins	for	quan@ty	QB	of	Coin	B	using	a	Transac@on	of	
the	form	A→B.	The	Slán-Chain™	Block	Producer	will	ensure	that	the	quan@ty	QA	 is	actually	owned	by	
the	holder.		

During	the	Escrow	Management	phase	of	the	Produc@on	of	the	current	Block,	the	Coin	A	quan@ty	QA	
will	be	moved	to	the	Slán-Chain™	escrow	and	will	no	longer	be	the	property	of	the	original	holder.		

The	Block	Producer	will	 then	examine	the	Slán-Chain™	looking	for	all	 recent,	pending	Transac@ons	of	
the	 form	B→A.	 The	most	 recent	 offer	with	 compa@ble	quan@@es	 (if	 found)	will	 be	used	 to	 create	 a	
seolement	Transac@on.	Seolement	Transac@ons	pay	the	quan@@es	of	Coin	A	and	B	to	their	new	holders	
from	 the	 Slán-Chain™	 escrow.	 The	 details	 of	 handling	 all	 the	 possibili@es	 will	 be	 documented	
elsewhere.	 In	par@cular,	the	meaning	of	“recent,	pending”	Transac@ons	 is	 intended	to	ensure	that	all	
opera@ons	are	determinis@c,	 that	extremely	 long-term	pending	offers	are	handled	correctly	and	 that	
the	behavior	of	the	Slán-Chain™	is	correct	even	during	periods	of	high	transac@on	rates.	

In	addi@on,	provision	is	made	to	allow	seolement	of	offers	which	include	ranges	of	quan@@es	(instead	
of	the	fixed	amounts	shown	in	the	previous	example),	as	well	as	discount	offers	for	larger	quan@@es.	

Slán-Chain™ Architecture DRAFT Page � of �52 52 (c) 2018 Brian McMillin

