System Optimizer™ Technology Overview
Abstract

The speed of computer hardware and the costs of softwaredevel opment are bothincreasing exponentialy.
These two opposing forces are taken for granted in the computer industry. The fact that software
development is unable to keep pace with advances in hardware technology is a mgor indudry-limiting
factor. We explore some aspects of this dichotomy and propose anew technologica method of reducing
these negative effects while obtaining significant increases in computer performancein the red world.

A proposed business strategy shows marketing approachesto build a profitable company based on this
technology. Findly, aseries of sepsillugrate an initid development path aswell as aplan for continued
growth into the future.

Introduction

The capabilities of modern computer hardware areincreasing at anexponentia rate. The efficiency of the
software programs that run on this new hardwareisnot improvingat dl. Infact, thereisastrong tendency
in the software community to ignore software efficiency issuesin favor of smply “throwing hardware’ a
a problem. This mind set can be easlly judtified by Smple economics: over time, the cost of hardware
performance goes down while the cost of software development increases.

The cost of software development and the amount of time required to devel op and test an gpplicationleads
tomany undesirable characteristicsthat have become an accepted part of modernsoftware. Becausethere
are no clear dternatives to the use of these development techniques, the attendant disadvantages remain
largely unappreciated.

Advantages and Disadvantages of Selected Software Development Techniques

Technique Advantages Disadvantages

Standard Third-Party Library
Modules

« Documented Interface « Unknown efficiency

* Known Performance « General-Purpose Design includes

Unnecessary Features
* Known to be Correct y

Application Modules

« Parallel Development
« Parallel Testing

* Improve Project Management

« |nefficient Execution

« Legacy Technology

Code Re-use

* Reduced Development Time
« Increased Reliability

« | nefficient Execution

* Legacy Technology

Target “L east-Common-
Denominator” Hardware

» Broad Usahility

« Inefficient Execution in many
cases

Continuous Version Upgrades

¢ Customers Get New Features

« Build on Existing Framework

« Core Functions Become
Progressively Outdated.

SystemOptimizerOverview.wpd

28Feb03 CONFIDENTIAL - DRAFT

Page 1 of 8

Modularization Consdered Har mful

A key technique used by software developers is modularization. Bresking a program into conceptua
modules enables a pardld devdopment effort to be conducted by different teams of programmers.
Standardi zed interfaces between these independently devel oped modules dlow theseindependent groups
of people to ensure correct operation of the overal project. The availability of libraries of standard
software modulesreduces project complexity and development. The reuse of provenmodulesaso helps
minimize the introduction of undetected errors.

Programmer’'s Concept
|

High Level Programming Language

e

tual Layers

Concep
L 1L

Designer's

Low Level Machine Language

.

Application Likbrary Operating Device
[Modules Functions System Drivers

i i i

Module Interfaces
Encountered During Program Execution

Unfortunately, this same modularity is the fundamental cause of the progressive |oss of program efficiency.
During program execution, eachtime a new “standard interface” is encountered the processor must spend
time trandferring control to the other module as well as transforming data to match the interface
requirements and thenback again. Thesetransformationsand control changesdo not congtitute useful steps
toward the god of the gpplication. They are artifactsintroduced by the design processto help ensure that
the human beings writing the program are able to do it right.

The key concept here is that the hardware executing the program has no
need whatsoever for the modularity that made the software devel opment

possible.

Referring to the diagram above, it is not uncommon for many layers of modularity to exist in red-world
goplications. Each layer adds its own unnecessary transformations and inefficiencies. The trandation of
an gpplicationdesigner’ sintent into an executable programis handled by programming language compilers
that implement the top-to-bottom links in the diagram. Traditiona optimizers are tasked withmaking this

SystemOptimizerOverview.wpd 28Feb03 CONFIDENTIAL - DRAFT Page 2 of 8

trandation as efficient as possible for a particular processor. The flow of information horizontaly across
the module interfaces near the bottom of the diagram is the respongbility of the computer processor.
Traditiondly, the way to speed up this flow isto buy afaster processor. Each of these module interfaces
represents a sgnificant speed pendty due to the unnecessary processing required only for the sake of the
interface itsdf.

Direct Interface Modular Interface

Transform Data to Match Interface
Transfer Control to Function
Perform Useful Function | Perform Useful Function
Transform Resultsto Match Interface
Return Control to Main Program

Move Reaults to Degtination

In addition, the generd-purpose nature of software modules (especidly in third-party libraries) has led
module developers to embed many “fedures’ into the code that are often unnecessary and
counterproductivefor the specific application. Ingrivingfor generdity many completely unrdated functions
are oftencombinedinto asingle module. These modules are often bloated, inefficient implementations of
otherwise ample tasks. Themodular design philosophy thusleadsto singlemoduleswith multiple, unrel ated
gods.

Conversdly, the* seded black box” aspectsof suchmodulesfrequently lead experienced developersto“rall
their own” duplicate functions because they are afraid to rely on the unknown code contained in off-the-
shelf libraries. Thisresultsin particular functions being redundantly implemented inmany modules. In this
case, the modular approach places the same function in multiple modules!

L egacy Softwar €' s Burden

Inanided world new featureswould be seamlesdy added to the exiding base of mature software. Asbugs
are detected and fixed, older software becomes more robust and reliable with time, forming a strong
foundation for new development.

In the real world, however, old mistakes become permanently embedded right dong with early,
fundamenta features. These flaws are entombed in layer upon layer of work-arounds and aternative
agorithms for resolving historical problems that may never existinthe future. Modern programstill contain
indructions for dealing with the Pentium FDIV bug, despite the fact that suchflawed processors have not
been manufactured for more than sx years. Enhanced ingtruction set features such as Intd’s MM X can
provide sgnificant performance improvements. Specific applications such asvideo games make use of the
extensions, but mainstream applications are dow to move away fromthe minimd ingtructionset of the x86
architecture.

The addition of support for new hardware features and the remova of work-aroundsfor old problems are

SystemOptimizerOverview.wpd 28Feb03 CONFIDENTIAL - DRAFT Page 3 of 8

traditionaly expensve and time consuming. Software developers see very little reason to devote their
scarce resources toward efforts that yield no apparent benefit.

Years of goplying this“If it an't broke, don't fix it” mentaity has become the recipe for the mediocrity of
the current software.

Traditional Approachesto Optimization

Programoptimizershave existed in various forms since the days of the first compilers. Grest strideshave
been made in matching high levd languages with the ingtruction sets of various computers. All modern
compilershave options that, for example, allow atradeoff between speed and memory usage. Evensmple
optimizations achieve sgnificant performance improvementsover “bruteforce” code generation, and some
academic compilers and lirkers autométically achieve extremely efficient execution within a single
application program.

Performance analysis tools from a number of companies are commonly used to find bottlenecks or
inefficient sectionsin programs as they are being developed and tested. The deve opersthen examinethe
offending sectionand manual ly revisethe software. Although these techniques are an important first step,
aninteresting effect of “hot spot dimination” techniquesisto producetheillusion of overdl efficiency while
leaving fundamentd inefficiencies soread evenly throughout the computer system.

All traditiona approaches to optimization are geared toward enabling the program developer to improve
his own product. Even though his product may rely heavily on interfaces to modules provided by other
vendors, these remain outside the control of the developer. In contrast, the proposed System Optimizer™
technology dlows improvements to be made in the linkages between program modules regardless of thar
origind source. This includes improving the performance of the interface between the program, the
operating system, and hardware-specific drivers.

An additiona benefit for the user will be increased system reliability. Many crashes are due to the
accidenta presence of anincompatible module in an otherwiseworking sysem. Thisleadsto the common
stuationwherethe user “re-indals the program” to makeit work again. The System Optimizer™ andyss
of the linkages between modules will detect these previoudy hidden errors.

The System Optimizer ™

All of the devel opment techniques described above are anecessary part of modern software devel opment.
What is needed isamethod of minmizing the negative effects of using thesetechniquesintothe future. The
proposed System Optimizer™ technology provides amethod of curing the ills of the devel opment process
after the fact. Traditiondly developed, existing programs are fed into the System Optimizer™ and
improved programs are automatically generated.

System Optimizer™ technology analyzes and modifies the actual executable program files on a user’s
system. Thistechnology will be capable of performing fully automated improvementsto awide variety of
program files. Instead of concentrating on asinglefile, the executables of an entire system are trested as
part of acombined whole. Looking & the big picture dlows programs, libraries, operating system filesand
devicedriversto be unified into an efficient body of code that could not have been created by any one of
the developers working by himself.

SystemOptimizerOverview.wpd 28Feb03 CONFIDENTIAL - DRAFT Page 4 of 8

Softwaredevel opersmug desgnfor asgenerd amarket of potentia usersas possible. Because the System
Optimizer™ gpplieschangesto a gpecific hardware/software gestalt environment it can make specidized
improvements that would be impossible for the developers to consider.

Most programs do not use the MM X extensions available onmodernintel processors. Since the System
Optimizer™ gpplies improvements to the complete inventory of application software indaled on a
particular system, it is able to ensure that the capabilities of the particular hardware are used to their
greatest advantage.

The initid god of the System Optimizer™ technology is to provide an improvement in rea-world
performance equivaent to doubling the speed of the processor. Thisisapproximately equivaent to legping
forward 18 months in hardware technology.

Business Strategy
System Optimizer™ technology presents six distinct but complementary marketing opportunities.

* Consumer Products. The Optimizer software can be marketed directly to consumers as a shrink-
wrapped retail product or for download viathe web. 1t would be used in a manner smilar to adisk
de-fragmenter to improve the performance of the computer.

» Developer Products. The Optimizer software would be sold (licensed) to software developersand
used as atool by them to improve the performance of their products.

* OEM Services. Mgor computer manufacturers(i.e. HP, Ddll, Gateway, and IBM) bundle software
from many manufacturers with their systems. Our strategy in this case would be to provide an
Optimization Service to these manufacturers. The result would be an optimized suite of applications
for ddivery with the system instead of the traditiona software bundle. As computers move toward
turnkey devices, optimized syssems could help promotebrand loyaltyand provideincreased capabilities
using less expensive hardware.

» Trandation Services. The detailed analyss performed as part of the Optimizer process can be used
to generate code for use on a different computer processor. Thisis conceptudly smilar to “ porting”
an gpplication from the PC to the Macintosh. This would not be a fully automated process in the
beginning, so it would be offered as a service to large customers with alarge existing base of legacy
code. Therecommended customerswould be manufacturers of telephone switches: Nortel, Motorola
and Ericsson.

* Technology Licenses. Optimizer software can be licensed for incorporation directly into the
operating system'’s program loader. The obvious candidate here is Microsoft, but other developers
of real-time and embedded operating systems may see even greeter advantages.

* Embedded Systems. Optimizer software can betargeted for any devicewhichembodiesasingle-use
firmware load. Primary exampleswould be appliances suchas cdl phones, GPS receivers, and video
games. The Optimizer offers of sgnificant performance improvements without new hardware.

As with al software products there are ample opportunities to introduce different versions covering a
spectrum of capabilities and price points. Future hardware and software development in the industry

SystemOptimizerOverview.wpd 28Feb03 CONFIDENTIAL - DRAFT Page 5 of 8

provide the basis for ongoing revision upgrades which represent continuing revenue streams.

From a business standpoint it is wise to target the Windows software environment and Intel Pentium®
processors for theinitid products. The core technology will be gpplicable to other platforms including
Linux, Windows CE, Sun, MIPS and Alpha.

Steps Toward the System Optimizer

In order to develop the System Optimizer™ technology and prepare it for market it will be necessary to
take a series of steps.

1. Write a dtatic analyzer for executables that can be tailored to detect optimization candidates.

2 Anayze avariety of rea-world computer systems to establish atargeted strategy.

3. Write ardiable Re-linker that can modify executables without introducing errors.

4 Sdect atarget operating system and suite of software for use in bench marking the development
and demondtrating the performance of the technology.

5. Writeacontrol-flow and data-flow analyzer to further refine optimizationcandidates. Critical here
isthe ability to detect potentidly unsafe optimizations.

6. Test techniquesfor introducing specific optimizations. Develop methodsto usetraditiona peephole
or RTL optimizations across module boundaries.

7. Use advanced hardware monitoring to select new optimization candidates.

In researching the possbilities of System Optimizer™ technology severa areas for improvement have

aready been discovered.

1. There are many retal goplications that are delivered with virtualy no optimizations whatsoever.

< A L o

In particular, companies often leave debugging and diagnostic options turned onin ther products
to provide informetion for customer support. If the application isn't crashing, eiminating this
extraneous code will present immediate benefits to the consumer.

Many daticaly linked application and library functions which make no calls may be replaced by
in-line code.

Functioncals with constant parameters are good candidates for splitting into multiple, soecidized
functions with fewer parameters.

Functions that begin with a conditiona should be moved at least partidly in-line,
Various forms of parameter passing and local variable dlocation should be eliminated.
Advanced ingruction sets should be part of the optimizer’s output generation capabilities.

Many production programs are released with obvious optimizations such asingructionreordering
disabled in an attempt to support source-line and source-module correlations with particular
indructions.

SystemOptimizerOverview.wpd 28Feb03 CONFIDENTIAL - DRAFT Page 6 of 8

An Overview of the Project

No assembly language programmer who looks at atrace of the execution of compiled code says “Gee,
that’s good code.” They invariably say “I could do that better, but | don’'t havetime.” Even then, these
observers are dill looking at the amdl picture. They do not have the tools to hdp them identify overal
meaningful indructions as different from usdess indructions.

Assuming acorrectly functioning program, let us envisonthe sequence of ingructions actudly executed by
a processor. In an ided world we should be able to identify two kinds of machine ingructions.
“Meaningful” indructionsareonesthat are necessary to move toward the god of the gpplication. “Usdess’
indructions are ones which do not contribute toward the god. It is easy to identify with certainty some
usdessingructions. the NO-OP, and the unconditiond branch, for example, are useless by definition and
never contribute toward the god. (Practical considerations necessitate the existence of ingtructions such
asunconditiona branchesbut their frequency of occurrence can be reduced to arbitrarily low levels). Most
indructions may be meaningful in some contexts and usdess in others. Good examples are redundant
LOADs or STORES in oneingtance they are usdess, in the next they are meaningful.

Possibly the mogt surprising result arising from this concept is that dl software operations that manipulate
the stack are usdless. PUSH and POP operations are used exclusively for parameter passing, and CALL,
RETURN and Softwarelnterrupt ingtructions are smply el aborate forms of unconditiona branches. These
are d| artifacts left over from the modular constructiontechniquesrequired by the human design process.
They do not actudly contribute to the solution of the problem at hand. (Note that this does not refer to
stack operations relating to hardware interrupts or exception management).

The mgor conceptud difficulty isthat it isnot possible to identify guaranteed-meaningful ingtructions from
the low leve looking up. Only aview of the big picture offers any assurance that the results of aparticular
computation are not subsequently discarded, thus rendering al those computing steps usdess.

The god of our optimizer will be to reduce the percentage of usdessingructions actudly executed by a
processor in the real world. Practical consderations dictate that some usdlessingructionswill remain, but
we should be able to reduce their impact to any desired leve.

After diminating usdless indructions the next step is to identify groups of instructions that can be
transformed into afaster group that accomplishesthe same god. Classcexamplesincdudethe optimization
of register usage. This step uses the same methods proven in traditiond optimizing compilers, but it is
applied across module boundaries. It isherethat new instruction set features can be generated as needed.

Findly, the resulting ingruction sequences should be written to an updated version of the executable file.
Inlinewiththe dlassic trade-off between speed and memory, thiswill invariably result ina somewhat larger
but much faster program.

Conclusion

M odern computer hardwareisrapidly increasing ingpeed but software development is lagging further and
further behind. Many of the methods used to improve the productivity of software development efforts
actudly result inmoreineffident programs. Thisprogressivelossof efficiency ismasked by thetremendous
increases in hardware performance.

SystemOptimizerOverview.wpd 28Feb03 CONFIDENTIAL - DRAFT Page 7 of 8

Wepresented a proposal for a System Optimizer™ whichcan make a Sgnificant improvement incomputer
performance usng exising hardware and softwareasabasis. Thetechnology would build onand improve,
not replace, current software. Several marketing and business srategies were outlined and multiple
opportunities for additional development were mentioned.

The System Optimizer™ represents a unique opportunity to improve the overal performance of exiding
computer systemsin one broad stroke. Using this technology, users can see immediate benefits without
ingalling new hardware or engaging in piecemed upgrades of software packages.

SystemOptimizerOverview.wpd 28Feb03 CONFIDENTIAL - DRAFT Page 8 of 8

