
TEAM
DOCUMENTATION

Brian McMillin

11 October 2017

Brian’s Plan for This Presentation

START

Begin with a Joke
Disable Interrupts
Deliver Lecture
Enable Interrupts

Q&A - sleeping audience asks no questions

SUCCESS

A Rabbi,
A Priest and

A Duck
Walk into a bar...

Take Away
• Let Documentation Drive the Project

• Documentation is not an Afterthought

• Documentation is a critical component and must be
Tested

• Team Participation is just as important as in any other
aspect of Development

• Iteration and Feedback are critical

DISABLE INTERRUPTS
• This will be a fairly rapid-fire presentation

• Each slide could probably be discussed for a week

• Some of my assertions may be controversial

• Please assume that these are well-reasoned positions

• The presentation is intended to stimulate discussion later

• Some ideas may be of immediate benefit to you

Styles of Documentation

• Project Documentation

• Program Documentation

• Module Documentation

• Function Documentation

• Design Documentation

• Implementation
Documentation

• User Documentation

• Support Documentation

AUDIENCESCOPE

Journalistic Approach
• WHO - is the target audience?

• WHAT - are we trying to accomplish?

• WHERE - does this fit into the flow?

• WHEN - will this feature be used?

• WHY - is this necessary?

• HOW - are we going to solve the problem?

Precision is the Enemy of
Clarity

• “It is only necessary to be PRECISE when there is some
doubt as to the meaning” - Richard P. Feynman

• Strive for Clarity

• Clearly answer the WHY and the reader will understand

• Belabor him with details of HOW and he will not

• This is the fallacy of “Self-Documenting Code”

Development Team
Design

Implement Test

Three Different People

Expect Many Implementations

Design

Implement TestImplement
Implement

Design Rules
• It is a mistake to optimize too soon: specify

REQUIREMENTS not ALGORITHMS

• Anticipate multiple implementations

• Let the Implementer do the implementation

• Design for testability

• Let the Tester create the tests

• YOUR JOB IS TO DOCUMENT THE DESIGN

As the Designer -
• The hardest thing you will ever do is NOT WRITE CODE

• You will watch as other team members struggle to do what you
know you COULD do better and faster

• You will benefit from exposure to the creativity of your team
members

• Your Implementer and Tester will show you areas of your design
that need additional work

• The end product will be completed faster and be of higher quality

BUT....

Development Team
Design

Implement Test

Three Different People

Implementation Rules

• Create an Implementation based on the Design
documentation

• Choose the most expedient Implementation tools

• Optimize later - odds are it won’t matter anyway

• YOUR JOB IS TO HELP IMPROVE THE DESIGN
DOCUMENT and (incidentally) write the implementation

Test Rules
• Use the Design documentation to craft your test cases

• Do not test based on a specific Implementation

• Remember: Test cases for GOOD - - BAD - - BORDERLINE

• Never delete a test case - they are a valuable resource

• Anticipate continuing tests for Regression and Production

• Build tests to be included in Production code

• YOUR JOB IS TO HELP IMPROVE THE DESIGN DOCUMENT as
well as creating test cases to insure the Quality of the Implementation

Iterate:
Implement and Test

• When a Test case does not behave as expected - - -

• Report to the Designer

• If the Implementer or Tester misunderstood the goal, figure out
WHY and correct the Design document

• ACTUAL USAGE BECOMES THE QUALITY ASSURANCE TEST
FOR THE DESIGN DOCUMENT

• Each iteration improves the documentation and makes a more
robust product

• Teamwork improves each member’s skills

JavaDoc Style documentation
Is Useless

• Boilerplate “one size fits all” is equally bad in all cases

• Fill-in-the-blanks never seem to get filled in

• No requirement for usage examples

• Focuses on HOW but never WHY or WHEN

• No narrative to provide context

• “Pretty” output gives the illusion of substance

Productivity Metrics
are Useless

• Documentation is actually MORE IMPORTANT than code

• “Standard Lines of Code” give no weight to comments

• No standard, objective method of evaluating Quality of
Documentation

• Actual Code (Implementations) may be rewritten many
times during project development.

Rewriting Code is NOT a bad thing!

Consider
Literate Programming

• Begin with a Narrative

• Add Code only when necessary

• Do not muddle Code for different features together

• Envision substituting Code written in a different language

How does the Narrative change?

Should the narrative change at all?

Documentation is a
Project Management Tool

• Managers understand what a Team is working on

• Team can present status in a High-Level style

• Relationships between Teams become clear(er)

• Scopes and Schedules take on meaning

Team Member Roles
• Three roles: Designer - - Implementer - - Tester

• Each team member takes a different role for different
features

• Cross training

• Skills improvement

• Burnout prevention

• Quality Improvement

Take Away
• Let Documentation Drive the Project

• Documentation is not an Afterthought

• Documentation is a critical component and must be
Tested

• Team Participation is just as important as in any other
aspect of Development

• Iteration and Feedback are critical

If you want to Learn a subject
DO THE HOMEWORK

If you want to REALLY learn a subject
TRY TO TEACH IT

