TEAM
DOCUMENTATION

Brian McMillin
11 October 2017

Brian’s Plan for This Presentation

START

Begin with a Joke
Disable Interrupts

Deliver Lecture
Enable Interrupts

Q&A - sleeping audience asks no questions

SUCCESS

A Rabbi,
A Priest and
A Duck
Walk into a bar...

Take Away

Let Documentation Drive the Project
Documentation is not an Afterthought

Documentation is a critical component and must be
Tested

Team Participation is just as important as in any other
aspect of Development

lteration and Feedback are critical

DISABLE INTERRUPTS

e This will be a fairly rapid-fire presentation

e Each slide could probably be discussed for a week

e Some of my assertions may be controversial

e Please assume that these are well-reasoned positions

e The presentation is intended to stimulate discussion later

e Some ideas may be of immediate benefit to you

Styles of Documentation

SCOPE

Project Documentation
Program Documentation
Module Documentation

Function Documentation

AUDIENCE
Design Documentation

Implementation
Documentation

User Documentation

Support Documentation

Journalistic Approach

WHO - is the target audience?
WHAT - are we trying to accomplish?
WHERE - does this fit into the flow?
WHEN - will this feature be used?
WHY - is this necessary?

HOW - are we going to solve the problem?

Precision is the Enemy of
Clarity

“It is only necessary to be PRECISE when there is some
doubt as to the meaning” - Richard P. Feynman

Strive for Clarity
Clearly answer the WHY and the reader will understand
Belabor him with details of HOW and he will not

This is the fallacy of “Self-Documenting Code”

Development Team

O\
(mpement) — (e

Three Different People

Expect Many Implementations

Design Rules

It is a mistake to optimize too soon: specify
REQUIREMENTS not ALGORITHMS

Anticipate multiple implementations

Let the Implementer do the implementation
Design for testability

Let the Tester create the tests

YOUR JOB IS TO DOCUMENT THE DESIGN

As the Designer -

The hardest thing you will ever do is NOT WRITE CODE

You will watch as other team members struggle to do what you
know you COULD do better and faster

BUT....

You will benefit from exposure to the creativity of your team
members

Your Implementer and Tester will show you areas of your design
that need additional work

The end product will be completed faster and be of higher quality

Development Team

O\
(mpement) — (e

Three Different People

Implementation Rules

Create an Implementation based on the Design
documentation

Choose the most expedient Implementation tools
Optimize later - odds are it won’t matter anyway

YOUR JOB IS TO HELP IMPROVE THE DESIGN
DOCUMENT and (incidentally) write the implementation

Test Rules

Use the Design documentation to craft your test cases

Do not test based on a specific Implementation

Remember: Test cases for GOOD - - BAD - - BORDERLINE
Never delete a test case - they are a valuable resource
Anticipate continuing tests for Regression and Production
Build tests to be included in Production code

YOUR JOB IS TO HELP IMPROVE THE DESIGN DOCUMENT as
well as creating test cases to insure the Quality of the Implementation

Iterate:
Implement and Test

When a Test case does not behave as expected - - -

Report to the Designer

If the Implementer or Tester misunderstood the goal, figure out
WHY and correct the Design document

ACTUAL USAGE BECOMES THE QUALITY ASSURANCE TEST
FOR THE DESIGN DOCUMENT

Each iteration improves the documentation and makes a more
robust product

Teamwork improves each member’s skKills

JavaDoc Style documentation
Is Useless

e Bollerplate “one size fits all” is equally bad in all cases
e Fill-in-the-blanks never seem to get filled In

e No requirement for usage examples

* Focuses on HOW but never WHY or WHEN

e No narrative to provide context

e “Pretty” output gives the illusion of substance

Productivity Metrics
are Useless

Documentation is actually MORE IMPORTANT than code
“Standard Lines of Code” give no weight to comments

No standard, objective method of evaluating Quality of
Documentation

Actual Code (Implementations) may be rewritten many
times during project development.

Rewriting Code is NOT a bad thing!

Consider
Literate Programming

Begin with a Narrative
Add Code only when necessary
Do not muddle Code for different features together

Envision substituting Code written in a different language

How does the Narrative change?

Should the narrative change at all?

Documentation is a
Project Management Tool

Managers understand what a Team is working on
Team can present status in a High-Level style
Relationships between Teams become clear(er)

Scopes and Schedules take on meaning

Team Member Roles

Three roles: Designer - - Implementer - - Tester

Each team member takes a different role for different
features

Cross training
Skills improvement
Burnout prevention

Quality Improvement

Take Away

Let Documentation Drive the Project
Documentation is not an Afterthought

Documentation is a critical component and must be
Tested

Team Participation is just as important as in any other
aspect of Development

lteration and Feedback are critical

If you want to Learn a subject
DO THE HOMEWORK

If you want to REALLY learn a subject
TRY TO TEACH IT

